# GNU GPLv3, see LICENSE
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
def _gfmul(a, b):
"""Basic multiplication. Russian peasant algorithm."""
res = 0
while a and b:
if b&1: res ^= a
if a&0x80: a = 0xff&(a<<1)^0x1b
else: a <<= 1
b >>= 1
return res
g = 3 # generator
E = [None]*256 # exponentials
L = [None]*256 # logarithms
acc = 1
for i in range(256):
E[i] = acc
L[acc] = i
acc = _gfmul(acc, g)
L[1] = 0
INV = [E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse
def gfmul(a, b):
"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
assert 0<=a<=255, 0<=b<=255
if a==0 or b==0: return 0
t = L[a]+L[b]
if t>255: t -= 255
return E[t]
def evaluate(coefs, x):
"""Evaluate polynomial's value at x.
:param coefs: [a0, a1, ...]."""
res = 0
xk = 1
for a in coefs:
res ^= gfmul(a, xk)
xk = gfmul(xk, x)
return res
def get_constant_coef(*points):
"""Compute constant polynomial coefficient given the points.
See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
k = len(points)
res = 0
for i in range(k):
(x, y) = points[i]
prod = 1
for j in range(k):
if i==j: continue
(xj, yj) = points[j]
prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
res ^= gfmul(y, prod)
return res