Files
@ eba1ea340d1f
Branch filter:
Location: Shamira/src/shamira/gf256.py - annotation
eba1ea340d1f
1.4 KiB
text/x-python
updated and fixed readme
4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d | # GNU GPLv3, see LICENSE
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
def _gfmul(a, b):
"""Basic multiplication. Russian peasant algorithm."""
res = 0
while a and b:
if b&1: res ^= a
if a&0x80: a = 0xff&(a<<1)^0x1b
else: a <<= 1
b >>= 1
return res
g = 3 # generator
E = [None]*256 # exponentials
L = [None]*256 # logarithms
acc = 1
for i in range(256):
E[i] = acc
L[acc] = i
acc = _gfmul(acc, g)
L[1] = 0
INV = [E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse
def gfmul(a, b):
"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
assert 0<=a<=255, 0<=b<=255
if a==0 or b==0: return 0
t = L[a]+L[b]
if t>255: t -= 255
return E[t]
def evaluate(coefs, x):
"""Evaluate polynomial's value at x.
:param coefs: [a0, a1, ...]."""
res = 0
xk = 1
for a in coefs:
res ^= gfmul(a, xk)
xk = gfmul(xk, x)
return res
def get_constant_coef(*points):
"""Compute constant polynomial coefficient given the points.
See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
k = len(points)
res = 0
for i in range(k):
(x, y) = points[i]
prod = 1
for j in range(k):
if i==j: continue
(xj, yj) = points[j]
prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
res ^= gfmul(y, prod)
return res
|