Files
@ 7cb01d4080c9
Branch filter:
Location: OneEye/exp/kerokero/train.py
7cb01d4080c9
4.3 KiB
text/x-python
a hinted neural network (failed)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | import os
import math
from time import time
import argparse
import logging as log
import numpy as np
from keras.layers import Conv2D,Dropout,Dense,Flatten,MaxPooling2D,BatchNormalization,GlobalAveragePooling2D,Reshape,concatenate
from keras.models import Sequential,load_model,Model,Input
from keras.callbacks import TensorBoard,ModelCheckpoint
import keras.metrics
import config as cfg
from k_util import averageDistance,generateData
keras.losses.averageDistance=averageDistance
keras.metrics.averageDistance=averageDistance
parser=argparse.ArgumentParser()
parser.add_argument("data")
parser.add_argument("--load_model")
parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5")
parser.add_argument("--load_hints")
parser.add_argument("--log_dir",default="/tmp/tflogs")
parser.add_argument("--epochs",type=int,default=100)
parser.add_argument("--initial_epoch",type=int,default=0)
args=parser.parse_args()
def createFullyConnected():
model=Sequential([
Flatten(input_shape=(224,224)),
Dense(128, activation="relu"),
Dropout(0.1),
Dense(64, activation="relu"),
Dense(8)
])
model.compile(
optimizer='adam',
loss='mse',
metrics=['mae','accuracy']
)
return model
def createCNN():
model=Sequential()
model.add(BatchNormalization(input_shape=(224,224,1)))
model.add(Conv2D(24,(5,5),padding="same",kernel_initializer="he_normal",activation="relu",input_shape=(224,224,1),data_format="channels_last"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(36,(5,5),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(48,(5,5),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(GlobalAveragePooling2D())
model.add(Dense(500,activation="relu"))
model.add(Dense(90,activation="relu"))
model.add(Dense(8))
model.add(Reshape((4,2)))
model.compile(optimizer="rmsprop",loss=averageDistance,metrics=["mae","accuracy"])
return model
def createHinted():
input=Input((224,224,1))
base=load_model(args.load_hints)
for layer in base.layers:
layer.trainable=False
hints=base(input)
x=BatchNormalization()(input)
x=Conv2D(24,(5,5),padding="same",kernel_initializer="he_normal",activation="relu",input_shape=(224,224,1),data_format="channels_last")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(36,(5,5),activation="relu")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(48,(5,5),activation="relu")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(64,(3,3),activation="relu")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(64,(3,3),activation="relu")(x)
x=GlobalAveragePooling2D()(x)
x=concatenate([x,Flatten()(hints)])
x=Dense(500,activation="relu")(x)
x=Dense(90,activation="relu")(x)
predictions=Reshape((4,2))(Dense(8)(x))
model=Model(inputs=input,outputs=predictions)
model.compile(optimizer='rmsprop',loss=averageDistance,metrics=['mae','accuracy'])
return model
if args.load_model:
model=load_model(args.load_model)
else:
model=createHinted()
model.summary()
log.info("loading data...")
with np.load(args.data) as data:
trainImages=(np.float32(data["trainImages"])/128-1).reshape((-1,224,224,1))
trainLabels=data["trainLabels"].reshape((-1,4,2))
testImages=(np.float32(data["testImages"])/128-1).reshape((-1,224,224,1))
testLabels=data["testLabels"].reshape((-1,4,2))
log.info("done")
n=len(trainImages)
k=round(n*0.9)
n_=n-k
(trainImages,valImages)=(np.float32(trainImages[:k]),np.float32(trainImages[k:]))
(trainLabels,valLabels)=(np.float32(trainLabels[:k]),np.float32(trainLabels[k:]))
tensorboard=TensorBoard(log_dir=os.path.join(args.log_dir,"{}".format(time())))
checkpoint=ModelCheckpoint(args.save_model,monitor="val_loss",period=10)
model.fit_generator(
generateData(trainImages,trainLabels,batch_size=20),
epochs=args.epochs,
initial_epoch=args.initial_epoch,
steps_per_epoch=math.ceil(n_/20),
validation_data=generateData(valImages,valLabels,batch_size=20),
validation_steps=math.ceil(k/20),
callbacks=[tensorboard,checkpoint]
)
print(model.evaluate(testImages,testLabels))
|