Files
@ 7cb01d4080c9
Branch filter:
Location: OneEye/exp/kerokero/train.py - annotation
7cb01d4080c9
4.3 KiB
text/x-python
a hinted neural network (failed)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | c934d44cdf5c 247811dfb9be c934d44cdf5c 655956f6ba89 9483b964f560 655956f6ba89 9483b964f560 7cb01d4080c9 7cb01d4080c9 4381957e967e 006c6f1aab13 655956f6ba89 c934d44cdf5c 247811dfb9be 006c6f1aab13 006c6f1aab13 006c6f1aab13 655956f6ba89 655956f6ba89 9483b964f560 655956f6ba89 655956f6ba89 7cb01d4080c9 7cb01d4080c9 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc dd45e200a0dc 655956f6ba89 dd45e200a0dc dd45e200a0dc ecf98a415d97 ecf98a415d97 ecf98a415d97 006c6f1aab13 006c6f1aab13 ecf98a415d97 ecf98a415d97 006c6f1aab13 ecf98a415d97 ecf98a415d97 006c6f1aab13 ecf98a415d97 ecf98a415d97 006c6f1aab13 ecf98a415d97 ecf98a415d97 ecf98a415d97 ecf98a415d97 ecf98a415d97 9483b964f560 ecf98a415d97 dd45e200a0dc 006c6f1aab13 dd45e200a0dc 006c6f1aab13 dd45e200a0dc dd45e200a0dc dd45e200a0dc 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 655956f6ba89 655956f6ba89 7cb01d4080c9 7cb01d4080c9 7cb01d4080c9 655956f6ba89 9483b964f560 9483b964f560 5f42b982809c 247811dfb9be 5f42b982809c 247811dfb9be 9483b964f560 655956f6ba89 247811dfb9be 247811dfb9be 247811dfb9be 247811dfb9be 247811dfb9be 247811dfb9be 4381957e967e 4381957e967e 4381957e967e 247811dfb9be 247811dfb9be 4381957e967e 4381957e967e 247811dfb9be 247811dfb9be 247811dfb9be 4381957e967e 4381957e967e 4381957e967e 7cb01d4080c9 | import os
import math
from time import time
import argparse
import logging as log
import numpy as np
from keras.layers import Conv2D,Dropout,Dense,Flatten,MaxPooling2D,BatchNormalization,GlobalAveragePooling2D,Reshape,concatenate
from keras.models import Sequential,load_model,Model,Input
from keras.callbacks import TensorBoard,ModelCheckpoint
import keras.metrics
import config as cfg
from k_util import averageDistance,generateData
keras.losses.averageDistance=averageDistance
keras.metrics.averageDistance=averageDistance
parser=argparse.ArgumentParser()
parser.add_argument("data")
parser.add_argument("--load_model")
parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5")
parser.add_argument("--load_hints")
parser.add_argument("--log_dir",default="/tmp/tflogs")
parser.add_argument("--epochs",type=int,default=100)
parser.add_argument("--initial_epoch",type=int,default=0)
args=parser.parse_args()
def createFullyConnected():
model=Sequential([
Flatten(input_shape=(224,224)),
Dense(128, activation="relu"),
Dropout(0.1),
Dense(64, activation="relu"),
Dense(8)
])
model.compile(
optimizer='adam',
loss='mse',
metrics=['mae','accuracy']
)
return model
def createCNN():
model=Sequential()
model.add(BatchNormalization(input_shape=(224,224,1)))
model.add(Conv2D(24,(5,5),padding="same",kernel_initializer="he_normal",activation="relu",input_shape=(224,224,1),data_format="channels_last"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(36,(5,5),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(48,(5,5),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid"))
model.add(Conv2D(64,(3,3),activation="relu"))
model.add(GlobalAveragePooling2D())
model.add(Dense(500,activation="relu"))
model.add(Dense(90,activation="relu"))
model.add(Dense(8))
model.add(Reshape((4,2)))
model.compile(optimizer="rmsprop",loss=averageDistance,metrics=["mae","accuracy"])
return model
def createHinted():
input=Input((224,224,1))
base=load_model(args.load_hints)
for layer in base.layers:
layer.trainable=False
hints=base(input)
x=BatchNormalization()(input)
x=Conv2D(24,(5,5),padding="same",kernel_initializer="he_normal",activation="relu",input_shape=(224,224,1),data_format="channels_last")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(36,(5,5),activation="relu")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(48,(5,5),activation="relu")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(64,(3,3),activation="relu")(x)
x=MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")(x)
x=Conv2D(64,(3,3),activation="relu")(x)
x=GlobalAveragePooling2D()(x)
x=concatenate([x,Flatten()(hints)])
x=Dense(500,activation="relu")(x)
x=Dense(90,activation="relu")(x)
predictions=Reshape((4,2))(Dense(8)(x))
model=Model(inputs=input,outputs=predictions)
model.compile(optimizer='rmsprop',loss=averageDistance,metrics=['mae','accuracy'])
return model
if args.load_model:
model=load_model(args.load_model)
else:
model=createHinted()
model.summary()
log.info("loading data...")
with np.load(args.data) as data:
trainImages=(np.float32(data["trainImages"])/128-1).reshape((-1,224,224,1))
trainLabels=data["trainLabels"].reshape((-1,4,2))
testImages=(np.float32(data["testImages"])/128-1).reshape((-1,224,224,1))
testLabels=data["testLabels"].reshape((-1,4,2))
log.info("done")
n=len(trainImages)
k=round(n*0.9)
n_=n-k
(trainImages,valImages)=(np.float32(trainImages[:k]),np.float32(trainImages[k:]))
(trainLabels,valLabels)=(np.float32(trainLabels[:k]),np.float32(trainLabels[k:]))
tensorboard=TensorBoard(log_dir=os.path.join(args.log_dir,"{}".format(time())))
checkpoint=ModelCheckpoint(args.save_model,monitor="val_loss",period=10)
model.fit_generator(
generateData(trainImages,trainLabels,batch_size=20),
epochs=args.epochs,
initial_epoch=args.initial_epoch,
steps_per_epoch=math.ceil(n_/20),
validation_data=generateData(valImages,valLabels,batch_size=20),
validation_steps=math.ceil(k/20),
callbacks=[tensorboard,checkpoint]
)
print(model.evaluate(testImages,testLabels))
|