Files
@ d2fa9460c0fb
Branch filter:
Location: Languedoc/languedoc.py
d2fa9460c0fb
3.5 KiB
text/x-python
moved the prediction part to a separate file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | import os
import re
import random
import itertools
from shared import identify, extract_ngram_freqs, TOP_NGRAM_COUNT
random.seed(19181028)
CROSSVALIDATION_SOURCE_COUNT = 5
TEST_LENS = [8, 16, 32, 64]
def preprocess(text):
text = re.sub(r"[\W\d_]+", " ", " "+text+" ")
return text.lower()
def merge_ngram_freqs(freqs):
n = len(freqs)
res = dict()
for d in freqs:
for (key, val) in d.items():
res.setdefault(key, 0)
res[key] += val/n
return res
class Sample:
def __init__(self, language="??", text=""):
self.language = language
self.frequencies = dict()
self._ranked_ngrams = dict()
if text:
self._extract(text)
def _extract(self, text):
for k in range(1, 4):
self.frequencies.update(extract_ngram_freqs(text, k))
@staticmethod
def merge(samples):
assert len({x.language for x in samples}) == 1
res = Sample(samples[0].language)
res.frequencies = merge_ngram_freqs([x.frequencies for x in samples])
return res
@property
def ranked_ngrams(self):
if not self._ranked_ngrams:
ordered_ngrams = sorted(self.frequencies.items(), key=lambda kv: -kv[1])[:TOP_NGRAM_COUNT]
self._ranked_ngrams = dict(zip([key for (key, freq) in ordered_ngrams], itertools.count(0)))
return self._ranked_ngrams
def compare(self, other):
"""take k most common
use frequencies x order
use letter, digrams, trigrams
use absolute x square"""
res = sum(abs(v-other.ranked_ngrams.get(k, len(other.ranked_ngrams))) for (k, v) in self.ranked_ngrams.items()) + \
sum(abs(v-self.ranked_ngrams.get(k, len(self.ranked_ngrams))) for (k, v) in other.ranked_ngrams.items())
return res
def print_overview(self):
print(f"Sample({self.language}):")
for freqs in self.frequencies:
x = [
(k, round(v, 3))
for (k, v) in sorted(freqs.items(), key=lambda kv: -kv[1])
]
print(" ", x[:8], "...", x[-8:])
print()
class SampleSet:
def __init__(self, language):
self.language = language
self.texts = []
self.samples = []
def add(self, text):
self.texts.append(text)
self.samples.append(Sample(self.language, text))
def create_model(self):
return Sample.merge(self.samples)
def generate_tests(self, n):
for (i, (text, sample)) in enumerate(itertools.cycle(zip(self.texts, self.samples))):
if i >= n:
break
yield (text, Sample.merge([x for x in self.samples if x is not sample]))
def cross_validate(sample_sets):
models = [s.create_model() for s in sample_sets]
score = 0
max_score = 0
for s in sample_sets:
for (test_text, partial_model) in s.generate_tests(CROSSVALIDATION_SOURCE_COUNT):
real_lang = partial_model.language
test_models = [partial_model] + [m for m in models if m.language != real_lang]
for k in TEST_LENS:
for i in range(10):
j = random.randrange(0, len(test_text)-k)
t = test_text[j:j+k]
predicted_lang = identify(t, test_models)
if predicted_lang == real_lang:
score += 1
else:
print(real_lang, predicted_lang, t)
max_score += 1
return score / max_score, (score, max_score)
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
LANG_DIRS = sorted([x.path for x in os.scandir(DATA_DIR)])
if __name__ == "__main__":
samples = []
for d in LANG_DIRS:
lang = os.path.basename(d)
lang_samples = SampleSet(lang)
samples.append(lang_samples)
for file in sorted(os.scandir(d), key=lambda f: f.name):
with open(file) as f:
text = f.read()
text = preprocess(text)
print(f"{lang}: {file.name} ({len(text)})")
lang_samples.add(text)
print(cross_validate(samples))
|