Changeset - d2fa9460c0fb
[Not reviewed]
default
0 1 1
Laman - 3 years ago 2022-10-01 16:15:56

moved the prediction part to a separate file
2 files changed with 72 insertions and 23 deletions:
0 comments (0 inline, 0 general)
languedoc.py
Show inline comments
 
@@ -3,11 +3,12 @@ import re
 
import random
 
import itertools
 

	
 
from shared import identify, extract_ngram_freqs, TOP_NGRAM_COUNT
 

	
 
random.seed(19181028)
 

	
 
CROSSVALIDATION_SOURCE_COUNT = 5
 
TEST_LENS = [8, 16, 32, 64]
 
TOP_NGRAM_COUNT = 6000
 

	
 

	
 
def preprocess(text):
 
@@ -15,22 +16,6 @@ def preprocess(text):
 
	return text.lower()
 

	
 

	
 
def extract_ngram_freqs(text, k):
 
	n = len(text)
 
	d = dict()
 

	
 
	for i in range(0, n-k+1):
 
		key = text[i:i+k]
 
		if key.isspace():
 
			continue
 

	
 
		d[key] = d.get(key, 0) + 1
 

	
 
	count = sum(d.values())
 

	
 
	return {key: val/count for (key, val) in d.items()}
 

	
 

	
 
def merge_ngram_freqs(freqs):
 
	n = len(freqs)
 
	res = dict()
 
@@ -141,12 +126,6 @@ def cross_validate(sample_sets):
 
	return score / max_score, (score, max_score)
 

	
 

	
 
def identify(text, models):
 
	sample = Sample(text=text)
 

	
 
	return min(map(lambda m: (m.compare(sample), m.language), models))[1]
 

	
 

	
 
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
 
LANG_DIRS = sorted([x.path for x in os.scandir(DATA_DIR)])
 

	
shared.py
Show inline comments
 
new file 100644
 
import itertools
 

	
 
TOP_NGRAM_COUNT = 5000
 

	
 

	
 
def extract_ngram_freqs(text, k):
 
	n = len(text)
 
	d = dict()
 

	
 
	for i in range(0, n-k+1):
 
		key = text[i:i+k]
 
		if key.isspace():
 
			continue
 

	
 
		d[key] = d.get(key, 0) + 1
 

	
 
	count = sum(d.values())
 

	
 
	return {key: val/count for (key, val) in d.items()}
 

	
 

	
 
class Sample:
 
	def __init__(self, language="??", text=""):
 
		self.language = language
 
		self.frequencies = dict()
 
		self._ranked_ngrams = dict()
 

	
 
		if text:
 
			self._extract(text)
 

	
 
	def _extract(self, text):
 
		for k in range(1, 4):
 
			self.frequencies.update(extract_ngram_freqs(text, k))
 

	
 
	@property
 
	def ranked_ngrams(self):
 
		if not self._ranked_ngrams:
 
			ordered_ngrams = sorted(self.frequencies.items(), key=lambda kv: -kv[1])[:TOP_NGRAM_COUNT]
 
			self._ranked_ngrams = dict(zip([key for (key, freq) in ordered_ngrams], itertools.count(0)))
 

	
 
		return self._ranked_ngrams
 

	
 
	def compare(self, other):
 
		"""take k most common
 
		use frequencies x order
 
		use letter, digrams, trigrams
 
		use absolute x square"""
 
		"""make a set difference of keys, multiply its size by the max score"""
 
		res = sum(abs(v-other.ranked_ngrams.get(k, len(other.ranked_ngrams))) for (k, v) in self.ranked_ngrams.items()) + \
 
					sum(abs(v-self.ranked_ngrams.get(k, len(self.ranked_ngrams))) for (k, v) in other.ranked_ngrams.items())
 

	
 
		return res
 

	
 
	def print_overview(self):
 
		print(f"Sample({self.language}):")
 

	
 
		for freqs in self.frequencies:
 
			x = [
 
				(k, round(v, 3))
 
				for (k, v) in sorted(freqs.items(), key=lambda kv: -kv[1])
 
			]
 
			print("  ", x[:8], "...", x[-8:])
 

	
 
		print()
 

	
 

	
 
def identify(text, models):
 
	sample = Sample(text=text)
 

	
 
	return sorted(models, key=lambda m: m.compare(sample))[0].language
0 comments (0 inline, 0 general)