import math
import cmath
import itertools
from functools import cache
from .gf256 import gfmul, gfpow
# divisors of 255 and their factors in natural numbers
DIVISORS = [3, 5, 15, 17, 51, 85, 255]
FACTORS = {3: [3], 5: [5], 15: [3, 5], 17: [17], 51: [3, 17], 85: [5, 17], 255: [3, 5, 17]}
# values of n-th square roots in GF256
SQUARE_ROOTS = {3: 189, 5: 12, 15: 225, 17: 53, 51: 51, 85: 15, 255: 3}
def ceil_size(n):
assert n <= DIVISORS[-1]
for (i, ni) in enumerate(DIVISORS):
if ni >= n:
break
return ni
@cache
def precompute_x(n):
"""Return a geometric sequence [1, w, w**2, ..., w**(n-1)], where w**n==1.
This can be done only for certain values of n."""
assert n in SQUARE_ROOTS, n
w = SQUARE_ROOTS[n] # primitive N-th square root of 1
return list(itertools.accumulate([1]+[w]*(n-1), gfmul))
def complex_dft(p):
"""Quadratic formula from the definition. The basic case in complex numbers."""
N = len(p)
w = cmath.exp(-2*math.pi*1j/N) # primitive N-th square root of 1
y = [0]*N
for k in range(N):
xk = w**k
for n in range(N):
y[k] += p[n] * xk**n
return y
def dft(p):
"""Quadratic formula from the definition. In GF256."""
N = len(p)
x = precompute_x(N)
y = [0]*N
for k in range(N):
for n in range(N):
y[k] ^= gfmul(p[n], gfpow(x[k], n))
return y
def compute_inverse(N1, N2):
for i in range(N2):
if N1*i % N2 == 1:
return i
raise ValueError("Failed to find an inverse to {0} mod {1}.".format(N1, N2))
def prime_fft(p, divisors, basic_dft=dft):
"""https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm"""
if len(divisors) == 1:
return basic_dft(p)
N = len(p)
N1 = divisors[0]
N2 = N//N1
N1_inv = compute_inverse(N1, N2)
N2_inv = compute_inverse(N2, N1)
ys = []
for n1 in range(N1): # compute rows
p_ = [p[(n2*N1+n1*N2) % N] for n2 in range(N2)]
ys.append(prime_fft(p_, divisors[1:], basic_dft))
for k2 in range(N2): # compute cols
p_ = [row[k2] for row in ys]
y_ = basic_dft(p_)
for (yi, row) in zip(y_, ys): # update col
row[k2] = yi
# remap and output
res = [0]*N
for k1 in range(N1):
for k2 in range(N2):
res[(k1*N2*N2_inv+k2*N1*N1_inv) % N] = ys[k1][k2]
return res
def evaluate(coefs, n):
ni = ceil_size(n)
extended_coefs = coefs + [0]*(ni-len(coefs))
ys = prime_fft(extended_coefs, FACTORS[ni])
return ys[:n]