# GNU GPLv3, see LICENSE
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
def _gfmul(a,b):
"""Basic multiplication. Russian peasant algorithm."""
res=0
while a and b:
if b&1: res^=a
if a&0x80: a=0xff&(a<<1)^0x1b
else: a<<=1
b>>=1
return res
g=3 # generator
E=[None]*256 # exponentials
L=[None]*256 # logarithms
acc=1
for i in range(256):
E[i]=acc
L[acc]=i
acc=_gfmul(acc, g)
L[1]=0
inv=[E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse
def gfmul(a, b):
"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
assert 0<=a<=255, 0<=b<=255
if a==0 or b==0: return 0
t=L[a]+L[b]
if t>255: t-=255
return E[t]
def evaluate(coefs,x):
"""Evaluate polynomial's value at x.
:param coefs: [a0, a1, ...]."""
res=0
xK=1
for a in coefs:
res^=gfmul(a,xK)
xK=gfmul(xK,x)
return res
def getConstantCoef(*points):
"""Compute constant polynomial coefficient given the points.
See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
k=len(points)
res=0
for i in range(k):
(x,y)=points[i]
prod=1
for j in range(k):
if i==j: continue
(xj,yj)=points[j]
prod=gfmul(prod, (gfmul(xj,inv[xj^x])))
res^=gfmul(y,prod)
return res