# GNU GPLv3, see LICENSE
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
from functools import reduce, cache
import operator
def _gfmul(a, b):
"""Basic multiplication. Russian peasant algorithm."""
res = 0
while a and b:
if b&1: res ^= a
if a&0x80: a = 0xff&(a<<1)^0x1b
else: a <<= 1
b >>= 1
return res
g = 3 # generator
E = [None]*256 # exponentials
L = [None]*256 # logarithms
acc = 1
for i in range(256):
E[i] = acc
L[acc] = i
acc = _gfmul(acc, g)
L[1] = 0
INV = [E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse
@cache
def gfmul(a, b):
"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
assert 0<=a<=255, 0<=b<=255
if a==0 or b==0: return 0
t = L[a]+L[b]
if t>255: t -= 255
return E[t]
def evaluate(coefs, x):
"""Evaluate polynomial's value at x.
:param coefs: [an, ..., a1, a0]."""
res = 0
for a in coefs: # Horner's rule
res = gfmul(res, x)
res ^= a
return res
def get_constant_coef(weights, y_coords):
"""Compute constant polynomial coefficient given the points.
See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
return reduce(
operator.xor,
map(lambda ab: gfmul(*ab), zip(weights, y_coords))
)
def compute_weights(x_coords):
assert x_coords
res = [
reduce(
gfmul,
(gfmul(xj, INV[xj^xi]) for xj in x_coords if xi!=xj),
1
) for xi in x_coords
]
return res