# Performance comparison #
## The base case ##
Let's assume we have a secret of length _m_. The splitting takes _n_ evaluations of a polynomial of order _k_ (over Galois field 256) for each byte, leading to _O(n\*k\*m)_ finite field multiplications. Reconstruction of the constant parameters during joining first precomputes parts of the Lagrange polynomial and then reuses them for each byte, taking _O(k\*k + k\*m)_ multiplications.
Benchmark results. The times for split and join mean _seconds per byte_ of the secret length:
<table>
<tr>
<th>Revision</th>
<th>Features</th>
<th>k / n parameters</th>
<th>Split</th>
<th>Join</th>
</tr>
<tr>
<td rowspan="2">a47ae3e113cc</td>
<td rowspan="2">-</td>
<td>2 / 3</td>
<td>5.02e-06</td>
<td>4.12e-05</td>
</tr>
<tr>
<td>254 / 254</td>
<td>0.0125</td>
<td>0.00175</td>
</tr>
</table>