Files
@ 4d58737e66bd
Branch filter:
Location: Shamira/src/shamira/fft.py
4d58737e66bd
2.0 KiB
text/x-python
fourier transform
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | import math
import cmath
def dft(p):
"""Quadratic formula from the definition."""
N = len(p)
w = cmath.exp(-2*math.pi*1j/N) # primitive N-th square root of 1
x = [0]*N
y = [0]*N
for k in range(N):
x[k] = w**k
for n in range(N):
y[k] += p[n] * x[k]**n
return y
def compute_inverse(N1, N2):
for i in range(N2):
if N1*i % N2 == 1:
return i
raise ValueError("Failed to find an inverse to {0} mod {1}.".format(N1, N2))
def prime_fft(p, divisors):
"""https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm"""
if len(divisors) == 1:
return dft(p)
N = len(p)
N1 = divisors[0]
N2 = N//N1
N1_inv = compute_inverse(N1, N2)
N2_inv = compute_inverse(N2, N1)
ys = []
for n1 in range(N1): # compute rows
p_ = [p[(n2*N1+n1*N2) % N] for n2 in range(N2)]
ys.append(prime_fft(p_, divisors[1:]))
for k2 in range(N2): # compute cols
p_ = [row[k2] for row in ys]
y_ = dft(p_)
for (yi, row) in zip(y_, ys): # update col
row[k2] = yi
# remap and output
res = [0]*N
for k1 in range(N1):
for k2 in range(N2):
res[(k1*N2*N2_inv+k2*N1*N1_inv) % N] = ys[k1][k2]
return res
# arr = [9,8,5,3,8,4,9,7,0,9,5,6,6,2,4]
# print(dft(arr))
# print()
# print(prime_fft(arr,[3,5]))
"""
def fft(x):
N = len(x)
if N <= 1: return x
even = fft(x[0::2])
odd = fft(x[1::2])
T = [cmath.exp(-2j*math.pi*k/N)*odd[k] for k in range(N//2)]
return [even[k] + T[k] for k in range(N//2)] + \
[even[k] - T[k] for k in range(N//2)]
def fft_mixed(x, r1, r2):
A = dft(x)
for k0 in range(0, r2):
pass
def bit_reverse(x, width):
y = 0
for i in range(width):
y <<= 1
y |= x&1
x >>= 1
return y
def bit_reverse_seq(x):
n = len(x)
width = round(math.log2(n))
return [x[bit_reverse(i, width)] for i in range(n)]
def fft2(x):
y = bit_reverse_seq(x)
n = len(x)
omegas = [(-2*math.pi*1j/n)**i for i in range(0, n)]
b = 1
while b<n:
for j in range(0, n, 2*b):
for k in range(0, b):
alpha = omegas[n*k//(2*b)]
u = y[j+k]
t = alpha*y[j+k+b]
y[j+k] = u+t
y[j+k+b] = u-t
b *= 2
return y
"""
|