# GNU GPLv3, see LICENSE
import random
import functools
import operator
from unittest import TestCase
from .. import gf256
from ..fft import *
def batch_evaluate(coefs, xs):
return [gf256.evaluate(coefs, x) for x in xs]
class TestFFT(TestCase):
def test_complex_dft(self):
self.assertEqual(complex_dft([0]), [0+0j])
self.assertEqual(complex_dft([1]), [1+0j])
self.assertEqual(complex_dft([2]), [2+0j])
all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1]), [4+0j, 2+0j]))
all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1, 4]), [8+0j, 0.5+2.59807621j, 0.5-2.59807621j]))
all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1, 4, 1]), [9+0j, -1+0j, 5+0j, -1+0j]))
all(self.assertAlmostEqual(a, b) for (a, b) in zip(
complex_dft([3, 1, 4, 1, 5]),
[14+0j, 0.80901699+2.04087031j, -0.30901699+5.20431056j, -0.30901699-5.20431056j, 0.80901699-2.04087031j]
))
def test_complex_prime_fft(self):
random.seed(1918)
for divisors in [[3], [2, 3], [3, 5], [3, 5, 17], [2, 3, 5, 7, 11]]:
n = functools.reduce(operator.mul, divisors)
coefficients = [random.randint(-128, 127) for i in range(n)]
a = prime_fft(coefficients, divisors, complex_dft)
b = complex_dft(coefficients)
all(self.assertAlmostEqual(ai, bi) for (ai, bi) in zip(a, b))
def test_finite_dft(self):
random.seed(1918)
x = {i: precompute_x(i) for i in [3, 5, 15, 17]} # all sets of xs
for n in [3, 5, 15, 17]:
coefficients = [random.randint(0, 255) for i in range(n)]
self.assertEqual(
dft(coefficients),
batch_evaluate(coefficients[::-1], x[n])
)
def test_finite_prime_fft(self):
random.seed(1918)
for divisors in [[3], [3, 5], [3, 17], [5, 17], [3, 5, 17]]:
n = functools.reduce(operator.mul, divisors)
coefficients = [random.randint(0, 255) for i in range(n)]
a = prime_fft(coefficients, divisors)
b = dft(coefficients)
all(self.assertAlmostEqual(ai, bi) for (ai, bi) in zip(a, b))