Changeset - d19e877af29d
[Not reviewed]
default
0 4 0
Laman - 4 years ago 2020-11-29 20:34:47

finite field discrete fourier transform
4 files changed with 100 insertions and 70 deletions:
0 comments (0 inline, 0 general)
src/shamira/fft.py
Show inline comments
 
import math
 
import cmath
 
import itertools
 

	
 
from .gf256 import gfmul, gfpow
 

	
 
# values of n-th square roots
 
SQUARE_ROOTS = {3: 189, 5: 12, 15: 225, 17: 53, 51: 51, 85: 15, 255: 3}
 

	
 

	
 
def precompute_x(n):
 
	"""Return a geometric sequence [1, w, w**2, ..., w**(n-1)], where w**n==1.
 
	This can be done only for certain values of n."""
 
	assert n in SQUARE_ROOTS
 
	w = SQUARE_ROOTS[n]  # primitive N-th square root of 1
 
	return list(itertools.accumulate([1]+[w]*(n-1), gfmul))
 

	
 

	
 
def complex_dft(p):
 
	"""Quadratic formula from the definition. The basic case in complex numbers."""
 
	N = len(p)
 
	w = cmath.exp(-2*math.pi*1j/N)  # primitive N-th square root of 1
 
	y = [0]*N
 
	for k in range(N):
 
		xk = w**k
 
		for n in range(N):
 
			y[k] += p[n] * xk**n
 
	return y
 

	
 

	
 
def dft(p):
 
	"""Quadratic formula from the definition."""
 
	"""Quadratic formula from the definition. In GF256."""
 
	N = len(p)
 
	w = cmath.exp(-2*math.pi*1j/N)  # primitive N-th square root of 1
 
	x = [0]*N
 
	x = precompute_x(N)
 
	y = [0]*N
 
	for k in range(N):
 
		x[k] = w**k
 
		for n in range(N):
 
			y[k] += p[n] * x[k]**n
 
			y[k] ^= gfmul(p[n], gfpow(x[k], n))
 
	return y
 

	
 

	
 
def compute_inverse(N1, N2):
 
	for i in range(N2):
 
		if N1*i % N2 == 1:
 
@@ -22,13 +46,13 @@ def compute_inverse(N1, N2):
 
	raise ValueError("Failed to find an inverse to {0} mod {1}.".format(N1, N2))
 

	
 

	
 
def prime_fft(p, divisors):
 
	"""https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm"""
 
	if len(divisors) == 1:
 
		return dft(p)
 
		return complex_dft(p)
 
	N = len(p)
 
	N1 = divisors[0]
 
	N2 = N//N1
 
	N1_inv = compute_inverse(N1, N2)
 
	N2_inv = compute_inverse(N2, N1)
 

	
 
@@ -36,71 +60,16 @@ def prime_fft(p, divisors):
 
	for n1 in range(N1):  # compute rows
 
		p_ = [p[(n2*N1+n1*N2) % N] for n2 in range(N2)]
 
		ys.append(prime_fft(p_, divisors[1:]))
 

	
 
	for k2 in range(N2):  # compute cols
 
		p_ = [row[k2] for row in ys]
 
		y_ = dft(p_)
 
		y_ = complex_dft(p_)
 
		for (yi, row) in zip(y_, ys):  # update col
 
			row[k2] = yi
 

	
 
	# remap and output
 
	res = [0]*N
 
	for k1 in range(N1):
 
		for k2 in range(N2):
 
			res[(k1*N2*N2_inv+k2*N1*N1_inv) % N] = ys[k1][k2]
 
	return res
 

	
 

	
 
# arr = [9,8,5,3,8,4,9,7,0,9,5,6,6,2,4]
 
# print(dft(arr))
 
# print()
 
# print(prime_fft(arr,[3,5]))
 

	
 
"""
 
def fft(x):
 
    N = len(x)
 
    if N <= 1: return x
 
    even = fft(x[0::2])
 
    odd = fft(x[1::2])
 
    T = [cmath.exp(-2j*math.pi*k/N)*odd[k] for k in range(N//2)]
 
    return [even[k] + T[k] for k in range(N//2)] + \
 
           [even[k] - T[k] for k in range(N//2)]
 

	
 

	
 
def fft_mixed(x, r1, r2):
 
	A = dft(x)
 
	for k0 in range(0, r2):
 
		pass
 

	
 

	
 
def bit_reverse(x, width):
 
	y = 0
 
	for i in range(width):
 
		y <<= 1
 
		y |= x&1
 
		x >>= 1
 
	return y
 

	
 

	
 
def bit_reverse_seq(x):
 
	n = len(x)
 
	width = round(math.log2(n))
 
	return [x[bit_reverse(i, width)] for i in range(n)]
 

	
 

	
 
def fft2(x):
 
	y = bit_reverse_seq(x)
 
	n = len(x)
 
	omegas = [(-2*math.pi*1j/n)**i for i in range(0, n)]
 
	b = 1
 
	while b<n:
 
		for j in range(0, n, 2*b):
 
			for k in range(0, b):
 
				alpha = omegas[n*k//(2*b)]
 
				u = y[j+k]
 
				t = alpha*y[j+k+b]
 
				y[j+k] = u+t
 
				y[j+k+b] = u-t
 
		b *= 2
 
	return y
 
"""
src/shamira/gf256.py
Show inline comments
 
@@ -35,12 +35,25 @@ def gfmul(a, b):
 
	if a==0 or b==0: return 0
 
	t = L[a]+L[b]
 
	if t>255: t -= 255
 
	return E[t]
 

	
 

	
 
def gfpow(x, k):
 
	"""Compute x**k."""
 
	i = 1
 
	res = 1
 
	while i <= k:
 
		if k&i:
 
			res = gfmul(res, x)
 
		x = gfmul(x, x)
 
		i <<= 1
 

	
 
	return res
 

	
 

	
 
def evaluate(coefs, x):
 
	"""Evaluate polynomial's value at x.
 

	
 
	:param coefs: [an, ..., a1, a0]."""
 
	res = 0
 

	
src/shamira/tests/test_fft.py
Show inline comments
 
# GNU GPLv3, see LICENSE
 

	
 
import random
 
import functools
 
import operator
 
from unittest import TestCase
 

	
 
from ..gf256 import evaluate
 
from ..fft import *
 

	
 

	
 
def batch_evaluate(coefs, xs):
 
	return [evaluate(coefs, x) for x in xs]
 

	
 

	
 
class TestFFT(TestCase):
 
	def test_dft(self):
 
		self.assertEqual(dft([0]), [0+0j])
 
		self.assertEqual(dft([1]), [1+0j])
 
		self.assertEqual(dft([2]), [2+0j])
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(dft([3, 1]), [4+0j, 2+0j]))
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(dft([3, 1, 4]), [8+0j, 0.5+2.59807621j, 0.5-2.59807621j]))
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(dft([3, 1, 4, 1]), [9+0j, -1+0j, 5+0j, -1+0j]))
 
	def test_complex_dft(self):
 
		self.assertEqual(complex_dft([0]), [0+0j])
 
		self.assertEqual(complex_dft([1]), [1+0j])
 
		self.assertEqual(complex_dft([2]), [2+0j])
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1]), [4+0j, 2+0j]))
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1, 4]), [8+0j, 0.5+2.59807621j, 0.5-2.59807621j]))
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1, 4, 1]), [9+0j, -1+0j, 5+0j, -1+0j]))
 
		all(self.assertAlmostEqual(a, b) for (a, b) in zip(
 
			dft([3, 1, 4, 1, 5]),
 
			complex_dft([3, 1, 4, 1, 5]),
 
			[14+0j, 0.80901699+2.04087031j, -0.30901699+5.20431056j, -0.30901699-5.20431056j, 0.80901699-2.04087031j]
 
		))
 

	
 
	def test_complex_prime_fft(self):
 
		random.seed(1918)
 
		for divisors in [[3], [2, 3], [3, 5], [3, 5, 17], [2, 3, 5, 7, 11]]:
 
			n = functools.reduce(operator.mul, divisors)
 
			coefficients = [random.randint(-128, 127) for i in range(n)]
 
			a = prime_fft(coefficients, divisors)
 
			b = complex_dft(coefficients)
 
			all(self.assertAlmostEqual(ai, bi) for (ai, bi) in zip(a, b))
 

	
 
	def test_dft(self):
 
		random.seed(1918)
 
		x = {i: precompute_x(i) for i in [3, 5, 15, 17]}  # all sets of xs
 

	
 
		for n in [3, 5, 15, 17]:
 
			coefficients = [random.randint(0, 255) for i in range(n)]
 
			self.assertEqual(
 
				dft(coefficients),
 
				batch_evaluate(coefficients[::-1], x[n])
 
			)
src/shamira/tests/test_gf256.py
Show inline comments
 
@@ -19,12 +19,32 @@ class TestGF256(TestCase):
 

	
 
	def test_gfmul(self):
 
		for a in range(256):
 
			for b in range(256):
 
				self.assertEqual(_gfmul(a, b), gfmul(a, b))
 

	
 
	def test_gfpow(self):
 
		self.assertEqual(gfpow(0, 0), 1)
 

	
 
		for i in range(1, 256):
 
			self.assertEqual(gfpow(i, 0), 1)
 
			self.assertEqual(gfpow(i, 1), i)
 
			self.assertEqual(gfpow(0, i), 0)
 
			self.assertEqual(gfpow(1, i), 1)
 
			self.assertEqual(gfpow(i, 256), i)
 
			self.assertEqual(gfpow(i, 2), gfmul(i, i))
 

	
 
		random.seed(1918)
 
		for i in range(256):
 
			j = random.randint(2, 255)
 
			k = random.randint(3, 255)
 
			y = 1
 
			for m in range(k):
 
				y = gfmul(y, j)
 
			self.assertEqual(gfpow(j, k), y)
 

	
 
	def test_evaluate(self):
 
		for x in range(256):
 
			(a0, a1, a2, a3) = (x, x>>1, x>>2, x>>3)
 
			self.assertEqual(evaluate([17], x), 17)  # constant polynomial
 
			self.assertEqual(evaluate([a3, a2, a1, a0], 0), x)  # any polynomial at 0
 
			self.assertEqual(evaluate([a3, a2, a1, a0], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
0 comments (0 inline, 0 general)