Changeset - 32a0e0fcabd0
[Not reviewed]
default
0 6 0
Laman - 5 years ago 2020-05-03 18:28:16

optimized the reconstruction operation
6 files changed with 55 insertions and 32 deletions:
0 comments (0 inline, 0 general)
readme.md
Show inline comments
 
# Shamira #
 

	
 
Implements [Shamir's secret sharing algorithm](https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing). Splits a string or a byte sequence byte-per-byte into _n_<255 shares, with any _k_ of them sufficient for reconstruction of the original input.
 

	
 
Outputs the shares as hexadecimal, Base32 or Base64 encoded strings.
 

	
 
## Installation and usage ##
 

	
 
Can be run straight from the cloned repository by executing the package with `python -m shamira` or simply installed with `python setup.py build`, `python setup.py install`. Then imported in your code with `import shamira` or run from the command line with `shamira`.
 

	
 
## Performance ##
 

	
 
As it is, the code is not very fast. Splitting takes _n_ evaluations of a polynomial of order _k_ over Galois field 256, leading to _O(n\*k)_ finite field multiplications. Reconstruction of the constant parameters during joining similarly takes _O(k\*k)_ multiplications.
 
As it is, the code is not very fast. Let's assume we have a secret of length _m_. For each byte, the splitting takes _n_ evaluations of a polynomial of order _k_ over Galois field 256, leading to _O(n\*k\*m)_ finite field multiplications. Reconstruction of the constant parameters during joining takes _O(k\*k + k\*m)_ multiplications.
 

	
 
Benchmark results, all values mean _seconds per byte_ of the secret length:
 
<table>
 
    <tr>
 
        <th>k / n parameters</th>
 
        <th>Split</th>
 
        <th>Join</th>
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a Raspberry Pi 3)</td>
 
        <td>7.99e-05</td>
 
        <td>0.000428</td>
 
        <td>8.32e-05</td>
 
        <td>0.000435</td>
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a laptop)</td>
 
        <td>1e-05</td>
 
        <td>6.7e-05</td>
 
        <td>1.09e-05</td>
 
        <td>7.17e-05</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a Raspberry Pi 3)</td>
 
        <td>0.417</td>
 
        <td>0.471</td>
 
        <td>0.414</td>
 
        <td>0.0314</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a laptop)</td>
 
        <td>0.0431</td>
 
        <td>0.0542</td>
 
        <td>0.0435</td>
 
        <td>0.00347</td>
 
    </tr>
 
</table>
 

	
 
While the speeds are not awful, for longer secrets I recommend encrypting them with a random key of your choice and splitting only the key. Anyway, you can run your own benchmark with `shamira benchmark`
src/shamira/condensed.py
Show inline comments
 
@@ -18,40 +18,40 @@ def gfmul(a, b):
 
	return res
 

	
 

	
 
g = 3  # generator
 
E = [None]*256  # exponentials
 
L = [None]*256  # logarithms
 
acc = 1
 
for i in range(256):
 
	E[i] = acc
 
	L[acc] = i
 
	acc = gfmul(acc, g)
 
L[1] = 0
 
inv = [E[255-L[i]] if i!=0 else None for i in range(256)]  # multiplicative inverse
 
INV = [E[255-L[i]] if i!=0 else None for i in range(256)]  # multiplicative inverse
 

	
 

	
 
def get_constant_coef(*points):
 
	"""Compute constant polynomial coefficient given the points.
 

	
 
	See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
 
	k = len(points)
 
	res = 0
 
	for i in range(k):
 
		(x, y) = points[i]
 
		prod = 1
 
		for j in range(k):
 
			if i==j: continue
 
			(xj, yj) = points[j]
 
			prod = gfmul(prod, (gfmul(xj, inv[xj^x])))
 
			prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
 
		res ^= gfmul(y, prod)
 
	return res
 

	
 
###
 

	
 
import base64
 
import binascii
 

	
 

	
 
class SException(Exception): pass
 

	
 

	
src/shamira/core.py
Show inline comments
 
@@ -34,29 +34,31 @@ def generate_raw(secret, k, n):
 
	shares = [_share_byte(b, k, n) for b in secret]
 
	return [(i+1, bytes([s[i] for s in shares])) for i in range(n)]
 

	
 

	
 
def reconstruct_raw(*shares):
 
	"""Tries to recover the secret from its shares.
 

	
 
	:param shares: (((int) i, (bytes) share), ...)
 
	:return: (bytes) reconstructed secret. Too few shares return garbage."""
 
	if len({x for (x, _) in shares}) < len(shares):
 
		raise MalformedShare("Found a non-unique share. Please check your inputs.")
 

	
 
	secret_len = len(shares[0][1])
 
	(xs, payloads) = zip(*shares)
 
	secret_len = len(payloads[0])
 
	res = [None]*secret_len
 
	weights = gf256.compute_weights(xs)
 
	for i in range(secret_len):
 
		points = [(x, s[i]) for (x, s) in shares]
 
		res[i] = (gf256.get_constant_coef(*points))
 
		ys = [s[i] for s in payloads]
 
		res[i] = (gf256.get_constant_coef(weights, ys))
 
	return bytes(res)
 

	
 

	
 
def generate(secret, k, n, encoding="b32", label="", omit_k_n=False):
 
	"""Wraps generate_raw().
 

	
 
	:param secret: (str or bytes)
 
	:param k: number of shares necessary for secret recovery
 
	:param n: number of shares generated
 
	:param encoding: {hex, b32, b64} desired output encoding. Hexadecimal, Base32 or Base64.
 
	:param label: (str) any label to prefix the shares with
 
	:param omit_k_n: (boolean) suppress the default shares prefix
src/shamira/gf256.py
Show inline comments
 
# GNU GPLv3, see LICENSE
 

	
 
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
 

	
 
from functools import reduce
 
import operator
 

	
 

	
 
def _gfmul(a, b):
 
	"""Basic multiplication. Russian peasant algorithm."""
 
	res = 0
 
	while a and b:
 
		if b&1: res ^= a
 
		if a&0x80: a = 0xff&(a<<1)^0x1b
 
		else: a <<= 1
 
		b >>= 1
 
	return res
 

	
 

	
 
@@ -38,27 +41,34 @@ def gfmul(a, b):
 
def evaluate(coefs, x):
 
	"""Evaluate polynomial's value at x.
 

	
 
	:param coefs: [a0, a1, ...]."""
 
	res = 0
 
	xk = 1
 
	for a in coefs:
 
		res ^= gfmul(a, xk)
 
		xk = gfmul(xk, x)
 
	return res
 

	
 

	
 
def get_constant_coef(*points):
 
def get_constant_coef(weights, y_coords):
 
	"""Compute constant polynomial coefficient given the points.
 

	
 
	See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
 
	k = len(points)
 
	res = 0
 
	for i in range(k):
 
		(x, y) = points[i]
 
		prod = 1
 
		for j in range(k):
 
			if i==j: continue
 
			(xj, yj) = points[j]
 
			prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
 
		res ^= gfmul(y, prod)
 
	return reduce(
 
		operator.xor,
 
		map(lambda ab: gfmul(*ab), zip(weights, y_coords))
 
	)
 

	
 

	
 
def compute_weights(x_coords):
 
	assert x_coords
 

	
 
	res = [
 
			reduce(
 
				gfmul,
 
				(gfmul(xj, INV[xj^xi]) for xj in x_coords if xi!=xj),
 
				1
 
			) for xi in x_coords
 
	]
 

	
 
	return res
src/shamira/tests/test_gf256.py
Show inline comments
 
@@ -21,42 +21,47 @@ class TestGF256(TestCase):
 
		for a in range(256):
 
			for b in range(256):
 
				self.assertEqual(_gfmul(a, b), gfmul(a, b))
 

	
 
	def test_evaluate(self):
 
		for x in range(256):
 
			(a0, a1, a2, a3) = (x, x>>1, x>>2, x>>3)
 
			self.assertEqual(evaluate([17], x), 17)  # constant polynomial
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 0), x)  # any polynomial at 0
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
 

	
 
	def test_get_constant_coef(self):
 
		self.assertEqual(get_constant_coef((1, 1), (2, 2), (3, 3)), 0)
 
		weights = compute_weights((1, 2, 3))
 
		ys = (1, 2, 3)
 
		self.assertEqual(get_constant_coef(weights, ys), 0)
 

	
 
		random.seed(17)
 
		random_matches = 0
 
		for i in range(10):
 
			k = random.randint(2, 255)
 

	
 
			# exact
 
			res = self.check_coefs_match(k, k)
 
			self.assertEqual(res[0], res[1])
 

	
 
			# overdetermined
 
			res = self.check_coefs_match(k, 256)
 
			self.assertEqual(res[0], res[1])
 

	
 
			# underdetermined => random
 
			res = self.check_coefs_match(k, k-1)
 
			if res[0]==res[1]:
 
				random_matches += 1
 
		self.assertLess(random_matches, 2)  # with a chance (255/256)**10=0.96 there should be no match
 

	
 
	def check_coefs_match(self, k, m):
 
		coefs = [random.randint(0, 255) for i in range(k)]
 
		points = [(j, evaluate(coefs, j)) for j in range(1, 256)]
 
		random.shuffle(points)
 
		return (get_constant_coef(*points[:m]), coefs[0])
 

	
 
		(xs, ys) = zip(*points[:m])
 
		weights = compute_weights(xs)
 
		return (get_constant_coef(weights, ys), coefs[0])
 

	
 

	
 
if __name__=='__main__':
 
	unittest.main()
src/shamira/tests/test_shamira.py
Show inline comments
 
@@ -19,29 +19,35 @@ class TestShamira(TestCase):
 
	@classmethod
 
	def tearDownClass(cls):
 
		os.urandom = cls._urandom
 

	
 
	def test_share_byte(self):
 
		with self.assertRaises(InvalidParams):  # too few shares
 
			_share_byte(b"a", 5, 4)
 
		with self.assertRaises(InvalidParams):  # too many shares
 
			_share_byte(b"a", 5, 255)
 
		with self.assertRaises(ValueError):  # not castable to int
 
			_share_byte("x", 2, 3)
 

	
 
		vals = _share_byte(ord(b"a"), 2, 3)
 
		points = list(zip(range(1, 256), vals))
 
		self.assertEqual(gf256.get_constant_coef(*points), ord(b"a"))
 
		self.assertEqual(gf256.get_constant_coef(*points[:2]), ord(b"a"))
 
		self.assertNotEqual(gf256.get_constant_coef(*points[:1]), ord(b"a"))  # underdetermined => random
 
		ys = _share_byte(ord(b"a"), 2, 3)
 
		xs = list(range(1, 4))
 

	
 
		weights = gf256.compute_weights(xs)
 
		self.assertEqual(gf256.get_constant_coef(weights, ys), ord(b"a"))
 

	
 
		weights = gf256.compute_weights(xs[:2])
 
		self.assertEqual(gf256.get_constant_coef(weights, ys[:2]), ord(b"a"))
 

	
 
		weights = gf256.compute_weights(xs[:1])
 
		self.assertNotEqual(gf256.get_constant_coef(weights, ys[:1]), ord(b"a"))  # underdetermined => random
 

	
 
	def test_generate_reconstruct_raw(self):
 
		for (k, n) in [(2, 3), (254, 254)]:
 
			shares = generate_raw(b"abcd", k, n)
 
			random.shuffle(shares)
 
			self.assertEqual(reconstruct_raw(*shares[:k]), b"abcd")
 
			self.assertNotEqual(reconstruct_raw(*shares[:k-1]), b"abcd")
 

	
 
	def test_generate_reconstruct(self):
 
		for encoding in ["hex", "b32", "b64"]:
 
			for secret in [b"abcd", "abcde", "ěščřžý"]:
 
				for (k, n) in [(2, 3), (254, 254)]:
0 comments (0 inline, 0 general)