Changeset - 32a0e0fcabd0
[Not reviewed]
default
0 6 0
Laman - 5 years ago 2020-05-03 18:28:16

optimized the reconstruction operation
6 files changed with 55 insertions and 32 deletions:
0 comments (0 inline, 0 general)
readme.md
Show inline comments
 
@@ -10,7 +10,7 @@ Can be run straight from the cloned repo
 

	
 
## Performance ##
 

	
 
As it is, the code is not very fast. Splitting takes _n_ evaluations of a polynomial of order _k_ over Galois field 256, leading to _O(n\*k)_ finite field multiplications. Reconstruction of the constant parameters during joining similarly takes _O(k\*k)_ multiplications.
 
As it is, the code is not very fast. Let's assume we have a secret of length _m_. For each byte, the splitting takes _n_ evaluations of a polynomial of order _k_ over Galois field 256, leading to _O(n\*k\*m)_ finite field multiplications. Reconstruction of the constant parameters during joining takes _O(k\*k + k\*m)_ multiplications.
 

	
 
Benchmark results, all values mean _seconds per byte_ of the secret length:
 
<table>
 
@@ -21,23 +21,23 @@ Benchmark results, all values mean _seco
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a Raspberry Pi 3)</td>
 
        <td>7.99e-05</td>
 
        <td>0.000428</td>
 
        <td>8.32e-05</td>
 
        <td>0.000435</td>
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a laptop)</td>
 
        <td>1e-05</td>
 
        <td>6.7e-05</td>
 
        <td>1.09e-05</td>
 
        <td>7.17e-05</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a Raspberry Pi 3)</td>
 
        <td>0.417</td>
 
        <td>0.471</td>
 
        <td>0.414</td>
 
        <td>0.0314</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a laptop)</td>
 
        <td>0.0431</td>
 
        <td>0.0542</td>
 
        <td>0.0435</td>
 
        <td>0.00347</td>
 
    </tr>
 
</table>
 

	
src/shamira/condensed.py
Show inline comments
 
@@ -27,7 +27,7 @@ for i in range(256):
 
	L[acc] = i
 
	acc = gfmul(acc, g)
 
L[1] = 0
 
inv = [E[255-L[i]] if i!=0 else None for i in range(256)]  # multiplicative inverse
 
INV = [E[255-L[i]] if i!=0 else None for i in range(256)]  # multiplicative inverse
 

	
 

	
 
def get_constant_coef(*points):
 
@@ -42,7 +42,7 @@ def get_constant_coef(*points):
 
		for j in range(k):
 
			if i==j: continue
 
			(xj, yj) = points[j]
 
			prod = gfmul(prod, (gfmul(xj, inv[xj^x])))
 
			prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
 
		res ^= gfmul(y, prod)
 
	return res
 

	
src/shamira/core.py
Show inline comments
 
@@ -43,11 +43,13 @@ def reconstruct_raw(*shares):
 
	if len({x for (x, _) in shares}) < len(shares):
 
		raise MalformedShare("Found a non-unique share. Please check your inputs.")
 

	
 
	secret_len = len(shares[0][1])
 
	(xs, payloads) = zip(*shares)
 
	secret_len = len(payloads[0])
 
	res = [None]*secret_len
 
	weights = gf256.compute_weights(xs)
 
	for i in range(secret_len):
 
		points = [(x, s[i]) for (x, s) in shares]
 
		res[i] = (gf256.get_constant_coef(*points))
 
		ys = [s[i] for s in payloads]
 
		res[i] = (gf256.get_constant_coef(weights, ys))
 
	return bytes(res)
 

	
 

	
src/shamira/gf256.py
Show inline comments
 
@@ -2,6 +2,9 @@
 

	
 
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
 

	
 
from functools import reduce
 
import operator
 

	
 

	
 
def _gfmul(a, b):
 
	"""Basic multiplication. Russian peasant algorithm."""
 
@@ -47,18 +50,25 @@ def evaluate(coefs, x):
 
	return res
 

	
 

	
 
def get_constant_coef(*points):
 
def get_constant_coef(weights, y_coords):
 
	"""Compute constant polynomial coefficient given the points.
 

	
 
	See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
 
	k = len(points)
 
	res = 0
 
	for i in range(k):
 
		(x, y) = points[i]
 
		prod = 1
 
		for j in range(k):
 
			if i==j: continue
 
			(xj, yj) = points[j]
 
			prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
 
		res ^= gfmul(y, prod)
 
	return reduce(
 
		operator.xor,
 
		map(lambda ab: gfmul(*ab), zip(weights, y_coords))
 
	)
 

	
 

	
 
def compute_weights(x_coords):
 
	assert x_coords
 

	
 
	res = [
 
			reduce(
 
				gfmul,
 
				(gfmul(xj, INV[xj^xi]) for xj in x_coords if xi!=xj),
 
				1
 
			) for xi in x_coords
 
	]
 

	
 
	return res
src/shamira/tests/test_gf256.py
Show inline comments
 
@@ -30,7 +30,9 @@ class TestGF256(TestCase):
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
 

	
 
	def test_get_constant_coef(self):
 
		self.assertEqual(get_constant_coef((1, 1), (2, 2), (3, 3)), 0)
 
		weights = compute_weights((1, 2, 3))
 
		ys = (1, 2, 3)
 
		self.assertEqual(get_constant_coef(weights, ys), 0)
 

	
 
		random.seed(17)
 
		random_matches = 0
 
@@ -55,7 +57,10 @@ class TestGF256(TestCase):
 
		coefs = [random.randint(0, 255) for i in range(k)]
 
		points = [(j, evaluate(coefs, j)) for j in range(1, 256)]
 
		random.shuffle(points)
 
		return (get_constant_coef(*points[:m]), coefs[0])
 

	
 
		(xs, ys) = zip(*points[:m])
 
		weights = compute_weights(xs)
 
		return (get_constant_coef(weights, ys), coefs[0])
 

	
 

	
 
if __name__=='__main__':
src/shamira/tests/test_shamira.py
Show inline comments
 
@@ -28,11 +28,17 @@ class TestShamira(TestCase):
 
		with self.assertRaises(ValueError):  # not castable to int
 
			_share_byte("x", 2, 3)
 

	
 
		vals = _share_byte(ord(b"a"), 2, 3)
 
		points = list(zip(range(1, 256), vals))
 
		self.assertEqual(gf256.get_constant_coef(*points), ord(b"a"))
 
		self.assertEqual(gf256.get_constant_coef(*points[:2]), ord(b"a"))
 
		self.assertNotEqual(gf256.get_constant_coef(*points[:1]), ord(b"a"))  # underdetermined => random
 
		ys = _share_byte(ord(b"a"), 2, 3)
 
		xs = list(range(1, 4))
 

	
 
		weights = gf256.compute_weights(xs)
 
		self.assertEqual(gf256.get_constant_coef(weights, ys), ord(b"a"))
 

	
 
		weights = gf256.compute_weights(xs[:2])
 
		self.assertEqual(gf256.get_constant_coef(weights, ys[:2]), ord(b"a"))
 

	
 
		weights = gf256.compute_weights(xs[:1])
 
		self.assertNotEqual(gf256.get_constant_coef(weights, ys[:1]), ord(b"a"))  # underdetermined => random
 

	
 
	def test_generate_reconstruct_raw(self):
 
		for (k, n) in [(2, 3), (254, 254)]:
0 comments (0 inline, 0 general)