Files
@ 32a0e0fcabd0
Branch filter:
Location: Shamira/src/shamira/gf256.py - annotation
32a0e0fcabd0
1.5 KiB
text/x-python
optimized the reconstruction operation
4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 32a0e0fcabd0 4fa21dbcdb9d 4fa21dbcdb9d 4fa21dbcdb9d 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 32a0e0fcabd0 4fa21dbcdb9d | # GNU GPLv3, see LICENSE
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
from functools import reduce
import operator
def _gfmul(a, b):
"""Basic multiplication. Russian peasant algorithm."""
res = 0
while a and b:
if b&1: res ^= a
if a&0x80: a = 0xff&(a<<1)^0x1b
else: a <<= 1
b >>= 1
return res
g = 3 # generator
E = [None]*256 # exponentials
L = [None]*256 # logarithms
acc = 1
for i in range(256):
E[i] = acc
L[acc] = i
acc = _gfmul(acc, g)
L[1] = 0
INV = [E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse
def gfmul(a, b):
"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
assert 0<=a<=255, 0<=b<=255
if a==0 or b==0: return 0
t = L[a]+L[b]
if t>255: t -= 255
return E[t]
def evaluate(coefs, x):
"""Evaluate polynomial's value at x.
:param coefs: [a0, a1, ...]."""
res = 0
xk = 1
for a in coefs:
res ^= gfmul(a, xk)
xk = gfmul(xk, x)
return res
def get_constant_coef(weights, y_coords):
"""Compute constant polynomial coefficient given the points.
See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
return reduce(
operator.xor,
map(lambda ab: gfmul(*ab), zip(weights, y_coords))
)
def compute_weights(x_coords):
assert x_coords
res = [
reduce(
gfmul,
(gfmul(xj, INV[xj^xi]) for xj in x_coords if xi!=xj),
1
) for xi in x_coords
]
return res
|