Files @ fd790596c353
Branch filter:

Location: Regular-Expresso/regexp.py

Laman
implemented comparison of regexps with different alphabets
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import math
import itertools
import argparse
from abc import abstractmethod
from collections import deque


class ParsingError(Exception):
	pass


class Token:
	is_skippable = False

	@abstractmethod
	def list_first(self):
		pass

	@abstractmethod
	def list_last(self):
		pass

	@abstractmethod
	def list_neighbours(self):
		pass


class Lambda(Token):
	is_skippable = True

	def list_first(self):
		yield from []

	def list_last(self):
		yield from []

	def list_neighbours(self):
		yield from []


class Symbol(Token):
	def __init__(self, position, value):
		self.position = position
		self.value = value

	def list_first(self):
		yield self.position

	def list_last(self):
		yield self.position

	def list_neighbours(self):
		yield from []

	def __str__(self):
		return self.value


class Asterisk(Token):
	is_skippable = True

	def __init__(self, content: Token):
		self.content = content

	def list_first(self):
		yield from self.content.list_first()

	def list_last(self):
		yield from self.content.list_last()

	def list_neighbours(self):
		yield from self.content.list_neighbours()
		for x in self.list_last():
			for y in self.list_first():
				yield (x, y)

	def __str__(self):
		return str(self.content) + "*"


class Alternative(Token):
	def __init__(self, content: list):
		self.variants = []
		subsequence = []

		for token in content:
			if isinstance(token, AlternativeSeparator):
				if not subsequence:
					raise ParsingError("Found an empty Alternative variant.")
				self.variants.append(Chain(subsequence))
				subsequence = []
			else:
				subsequence.append(token)
		
		if not subsequence:
				raise ParsingError("Found an empty Alternative variant.")
		self.variants.append(Chain(subsequence))
		

	def list_first(self):
		for x in self.variants:
			yield from x.list_first()

	def list_last(self):
		for x in self.variants:
			yield from x.list_last()
	
	def list_neighbours(self):
		for x in self.variants:
			yield from x.list_neighbours()

	@property
	def is_skippable(self):
		return any(x.is_skippable for x in self.variants)

class AlternativeSeparator:
	pass

class Chain(Token):
	def __init__(self, content: list):
		self.content = content

	def list_first(self):
		for token in self.content:
			yield from token.list_first()
			if not token.is_skippable:
				break

	def list_last(self):
		for token in reversed(self.content):
			yield from token.list_last()
			if not token.is_skippable:
				break

	def list_neighbours(self):
		previous = []
		for token in self.content:
			for t in previous:
				for x in t.list_last():
					for y in token.list_first():
						yield (x, y)
			yield from token.list_neighbours()

			if token.is_skippable:
				previous.append(token)
			else:
				previous = [token]

	@property
	def is_skippable(self):
		return all(x.is_skippable for x in self.content)

	def __str__(self):
		return "(" + "".join(str(x) for x in self.content) + ")"


def find_closing_parenthesis(pattern, k):
	counter = 0

	for (i, c) in enumerate(pattern[k:]):
		if c == "(":
			counter += 1
		elif c == ")":
			counter -= 1
		if counter == 0:
			return k+i

	raise ParsingError(f'A closing parenthesis not found. Pattern: "{pattern}", position: {k}')


def parse(pattern, offset=0):
	res = []
	is_alternative = False

	i = 0
	while i < len(pattern):
		c = pattern[i]
		if c == "(":
			j = find_closing_parenthesis(pattern, i)
			inner_content = parse(pattern[i+1:j], offset+i+1)
			res.append(inner_content)
			i = j+1
		elif c == "*":
			try:
				token = res.pop()
			except IndexError as e:
				raise ParsingError(f'The asterisk operator is missing an argument. Pattern: "{pattern}", position {i}')
			res.append(Asterisk(token))
			i += 1
		elif c == ")":
			raise ParsingError(f'An opening parenthesis not found. Pattern: "{pattern}", position: {i}')
		elif c == "|" or c == "+":
			is_alternative = True
			res.append(AlternativeSeparator())
			i += 1
		elif c == "_":
			res.append(Lambda())
			i += 1
		else:
			res.append(Symbol(i+offset, c))
			i += 1

	if is_alternative:
		return Alternative(res)
	else:
		return Chain(res)


def print_dfa(dfa, label=""):
	n = len(dfa.alphabet_index)
	print(label)
	for i in range(0, len(dfa.rules), n):
		print(i//n, dfa.rules[i:i+n])
	print(dfa.end_states)


class Regexp:
	def __init__(self, pattern):
		r = parse(pattern)
		rules = dict()
		alphabet = set()

		for i in r.list_first():
			c = pattern[i]
			alphabet.add(c)
			key = (-1, c)
			if key not in rules:
				rules[key] = set()
			rules[key].add(i)

		for (i, j) in r.list_neighbours():
			c = pattern[j]
			alphabet.add(c)
			key = (i, c)
			if key not in rules:
				rules[key] = set()
			rules[key].add(j)

		end_states = set(r.list_last())
		if r.is_skippable:
			end_states.add(-1)

		self.rules = rules
		self.end_states = end_states
		self.alphabet = alphabet

	def match(self, s):
		current = {-1}

		for c in s:
			new_state = set()
			for st in current:
				key = (st, c)
				if key in self.rules:
					new_state.update(self.rules[key])
			current = new_state

		return any(st in self.end_states for st in current)

	def determinize(self):
		alphabet_index = {c: i for (i, c) in enumerate(sorted(self.alphabet))}
		n = len(alphabet_index)
		compact_rules = [-1] * n
		end_states = {0} if -1 in self.end_states else set()

		index = {(-1,): 0}
		stack = [(-1,)]
		while stack:
			multistate = stack.pop()
			new_rules = dict()
			
			for ((st, c), target) in filter(lambda item: item[0][0] in multistate, self.rules.items()):
				if c not in new_rules:
					new_rules[c] = set()
				new_rules[c].update(target)
			
			for (c, target_set) in new_rules.items():
				target_tup = tuple(sorted(target_set))
				if target_tup not in index:
					new_target = len(index)
					index[target_tup] = new_target
					compact_rules.extend([-1] * n)
					stack.append(target_tup)
				compact_rules[index[multistate]*n + alphabet_index[c]] = index[target_tup]
				if any(st in self.end_states for st in target_set):
					end_states.add(index[target_tup])

		fail = len(index)
		compact_rules = [(st if st >= 0 else fail) for st in compact_rules]
		compact_rules.extend([fail] * n)
		
		return (compact_rules, end_states, alphabet_index)


class RegexpDFA:
	def __init__(self, rules, end_states, alphabet_index):
		self.rules = rules
		self.end_states = end_states
		self.alphabet_index = alphabet_index

	@classmethod
	def create(cls, pattern):
		r = Regexp(pattern)
		(rules, end_states, alphabet_index) = r.determinize()

		return cls(rules, end_states, alphabet_index)

	def match(self, s):
		st = 0
		n = len(self.alphabet_index)
		fail = len(self.rules) // n

		for c in s:
			if c not in self.alphabet_index or st == fail:
				return False
			key = (st*n + self.alphabet_index[c])
			st = self.rules[key]

		return st in self.end_states

	def reduce(self):
		equivalents = self._find_equivalent_states()
		(rules, end_states) = self._collapse_states(equivalents)

		return RegexpDFA(rules, end_states, self.alphabet_index)

	def normalize(self):
		n = len(self.alphabet_index)
		index = {0: 0}
		queue = deque([0])

		rules = []

		while queue:
			si = queue.popleft()
			row = self.rules[si*n:(si+1)*n]
			for sj in row:
				if sj not in index:
					index[sj] = len(index)
					queue.append(sj)
			rules.extend(index[sj] for sj in row)
		
		end_states = {index[si] for si in self.end_states if si in index}

		return RegexpDFA(rules, end_states, self.alphabet_index)

	def find_distinguishing_string(self, r):
		if self.rules == r.rules and self.end_states == r.end_states:
			return None

		r1 = self._expand_alphabet(r.alphabet_index)
		r2 = r._expand_alphabet(self.alphabet_index)
		product = r1._build_product_automaton(r2)

		n = len(product.alphabet_index)
		reverse_alphabet_index = {v: k for (k, v) in product.alphabet_index.items()}
		queue = deque([(0, "")])
		visited = {0}
		while queue:
			(state, acc) = queue.popleft()
			if state in product.end_states:
				return acc
			for (i, target) in enumerate(product.rules[state*n:(state+1)*n]):
				if target not in visited:
					queue.append((target, acc+reverse_alphabet_index[i]))
					visited.add(target)
		
		assert False

	def _find_equivalent_states(self):
		n = len(self.alphabet_index)
		state_list = list(range(len(self.rules) // n))
		equivalents = {(s1, s2) for (i, s1) in enumerate(state_list) for s2 in state_list[i+1:] if (s1 in self.end_states) == (s2 in self.end_states)}
		
		ctrl = True
		while ctrl:
			ctrl = False
			for (s1, s2) in equivalents.copy():
				for ci in range(n):
					t1 = self.rules[s1*n + ci]
					t2 = self.rules[s2*n + ci]
					key = (min(t1, t2), max(t1, t2))
					if t1 != t2 and key not in equivalents:
						equivalents.remove((s1, s2))
						ctrl = True
						break
		
		return equivalents
	
	def _collapse_states(self, equivalents):
		n = len(self.alphabet_index)
		rules = []

		eq_mapping = dict()
		for (s1, s2) in equivalents:
			eq_mapping[s2] = min(s1, eq_mapping.get(s2, math.inf))

		discard_mapping = dict()
		discard_count = 0

		for i in range(0, len(self.rules), n):
			si = i//n
			if si in eq_mapping:
				discard_count += 1
				continue
			discard_mapping[si] = si - discard_count
			rules.extend(map(lambda st: eq_mapping.get(st, st), self.rules[i:i+n]))
		
		rules = [discard_mapping[st] for st in rules]
		end_states = {discard_mapping[eq_mapping.get(st, st)] for st in self.end_states}
		
		return (rules, end_states)

	def _expand_alphabet(self, alphabet_index):
		if alphabet_index == self.alphabet_index:
			return self

		n1 = len(self.alphabet_index)
		m = len(self.rules) // n1

		combined_alphabet = set(self.alphabet_index.keys()) | set(alphabet_index.keys())
		combined_index = {c: i for (i, c) in enumerate(sorted(combined_alphabet))}
		conversion_index = {v: combined_index[k] for (k, v) in self.alphabet_index.items()}
		n2 = len(combined_alphabet)

		rules = []
		for i in range(0, len(self.rules), n1):
			row = ([m]*n2)
			for (j, st) in enumerate(self.rules[i:i+n1]):
				row[conversion_index[j]] = st
			rules.extend(row)
		rules.extend([m]*n2)

		return RegexpDFA(rules, self.end_states, combined_index).reduce().normalize()

	def _build_product_automaton(self, r):
		n = len(self.alphabet_index)
		m = len(r.rules) // n
		k = len(self.rules) // n

		rules = []
		end_states = set()

		for s1 in range(k):
			row1 = self.rules[s1*n:(s1+1)*n]
			for s2 in range(m):
				row2 = r.rules[s2*n:(s2+1)*n]
				rules.extend([x*m + y for (x, y) in zip(row1, row2)])
				if (s1 in self.end_states) != (s2 in r.end_states):
					end_states.add(s1*m + s2)

		return RegexpDFA(rules, end_states, self.alphabet_index).reduce().normalize()


def test():
	tests = ["", "a", "ab", "aabb", "abab", "abcd", "abcbcdbcd"]
	for pattern in ["a(b|c)", "a*b*", "(ab)*", "a((bc)*d)*", "(a|b)*a(a|b)(a|b)(a|b)", "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"]:
		print("#", pattern)
		try:
			r = RegexpDFA.create(pattern).reduce().normalize()
		except ParsingError as e:
			print("Failed to parse the regexp:")
			print(e)
			continue
		for t in tests:
			print(t, r.match(t))
		print()


if __name__ == "__main__":
	parser = argparse.ArgumentParser()
	subparsers = parser.add_subparsers()
	
	test_parser = subparsers.add_parser("test")
	test_parser.set_defaults(name="test")

	match_parser = subparsers.add_parser("match")
	match_parser.add_argument("pattern")
	match_parser.add_argument("string")
	match_parser.set_defaults(name="match")

	compare_parser = subparsers.add_parser("compare")
	compare_parser.add_argument("pattern1")
	compare_parser.add_argument("pattern2")
	compare_parser.set_defaults(name="compare")

	args = parser.parse_args()

	if args.name == "test":
		test()
	elif args.name == "match":
		try:
			r = RegexpDFA.create(args.pattern).reduce().normalize()
		except ParsingError as e:
			print("Failed to parse the regexp:")
			print(e)
		print(r.match(args.string))
	elif args.name == "compare":
		r1 = RegexpDFA.create(args.pattern1).reduce().normalize()
		r2 = RegexpDFA.create(args.pattern2).reduce().normalize()
		print(r1.find_distinguishing_string(r2))
	else:
		parser.print_help()