Files
@ d2dfbcc8bb96
Branch filter:
Location: Regular-Expresso/src/regexp.rs
d2dfbcc8bb96
10.5 KiB
application/rls-services+xml
refactoring: determinization indexing states with vecs instead of string hashes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | use std::{collections::{HashMap, HashSet, VecDeque}, iter};
mod token;
pub use token::ParsingError;
use token::parse;
const START_NFA: usize = usize::MAX;
const START_DFA: usize = 0;
#[derive(Debug)]
pub struct Regexp {
rules: HashMap<(usize, char), HashSet<usize>>,
end_states: HashSet<usize>,
alphabet: Vec<char>
}
impl Regexp {
pub fn new(pattern: &String) -> Result<Regexp, ParsingError> {
let r = parse(pattern, 0)?;
let pattern_chars = Vec::from_iter(pattern.chars());
let mut rules: HashMap<(usize, char), HashSet<usize>> = HashMap::new();
let mut alphabet: HashSet<char> = HashSet::new();
for i in r.list_first() {
let c = pattern_chars[i];
alphabet.insert(c);
let key = (START_NFA, c);
match rules.get_mut(&key) {
Some(set) => {set.insert(i);},
None => {rules.insert(key, HashSet::from([i]));}
};
}
for (i, j) in r.list_neighbours() {
let c = pattern_chars[j];
alphabet.insert(c);
let key = (i, c);
match rules.get_mut(&key) {
Some(set) => {set.insert(j);},
None => {rules.insert(key, HashSet::from([j]));}
};
}
let mut end_states = HashSet::from_iter(r.list_last().into_iter());
if r.is_skippable() {
end_states.insert(START_NFA);
}
let mut alphabet_vec = Vec::from_iter(alphabet.into_iter());
alphabet_vec.sort();
return Ok(Regexp{rules, end_states, alphabet: alphabet_vec});
}
pub fn eval(&self, s: String) -> bool {
let mut multistate = HashSet::from([START_NFA]);
for c in s.chars() {
let mut new_multistate = HashSet::new();
for state in multistate {
if let Some(x) = self.rules.get(&(state, c)) {
new_multistate = new_multistate.union(&x).map(|&y| y).collect();
} else if let Some(x) = self.rules.get(&(state, '.')) {
new_multistate = new_multistate.union(&x).map(|&y| y).collect();
}
}
multistate = new_multistate;
}
return multistate.iter().any(|x| self.end_states.contains(x));
}
pub fn determinize(&self) -> RegexpDFA {
const FAIL: usize = usize::MAX;
let alphabet_index: HashMap<char, usize> = self.alphabet.iter().enumerate().map(|(i, c)| (*c, i)).collect();
let n = alphabet_index.len();
let mut compact_rules = vec![FAIL; n];
let mut end_states: HashSet<usize> = HashSet::new();
if self.end_states.contains(&START_NFA) {end_states.insert(START_DFA);}
let mut index = HashMap::from([(vec![START_NFA], START_DFA)]);
let mut stack = vec![vec![START_NFA]];
while !stack.is_empty() {
let multistate = stack.pop().unwrap();
let mut new_rules: HashMap<char, HashSet<usize>> = HashMap::new();
for key in self.rules.keys().filter(|(st, _c)| multistate.binary_search(st).is_ok()) {
let (_st, c) = key;
if !new_rules.contains_key(c) {
new_rules.insert(*c, HashSet::new());
}
for target in &self.rules[key] {
new_rules.get_mut(c).unwrap().insert(*target);
}
}
for (c, target_set) in new_rules.into_iter() {
let mut target_vec = Vec::from_iter(target_set.into_iter());
target_vec.sort();
let is_end = target_vec.iter().any(|st| self.end_states.contains(st));
if !index.contains_key(&target_vec) {
let target_new = index.len();
index.insert(target_vec.clone(), target_new);
compact_rules.extend(iter::repeat(FAIL).take(n));
stack.push(target_vec.clone());
}
compact_rules[index[&multistate]*n + alphabet_index[&c]] = index[&target_vec];
if is_end {
end_states.insert(index[&target_vec]);
}
}
}
let fail = index.len();
compact_rules = compact_rules.into_iter().map(|st| if st != FAIL {st} else {fail}).collect();
compact_rules.extend(iter::repeat(fail).take(n));
return RegexpDFA::new(compact_rules, end_states, alphabet_index);
}
}
#[derive(Clone)]
pub struct RegexpDFA {
rules: Vec<usize>,
end_states: HashSet<usize>,
alphabet_index: HashMap<char, usize>
}
impl RegexpDFA {
pub fn new(rules: Vec<usize>, end_states: HashSet<usize>, alphabet_index: HashMap<char, usize>) -> RegexpDFA {
if rules.len() > 0 {
return RegexpDFA{rules, end_states, alphabet_index};
} else {
return RegexpDFA{
rules: vec![1, 1],
end_states,
alphabet_index: HashMap::from([('\0', 0)])
};
}
}
pub fn eval(&self, s: String) -> bool {
let n = self.alphabet_index.len();
let mut state = START_DFA;
for c in s.chars() {
if let Some(ci) = self.alphabet_index.get(&c) {
state = self.rules[state*n + ci];
} else {
return false;
}
}
return self.end_states.contains(&state);
}
pub fn reduce(&self) -> RegexpDFA {
let partition = self.find_equivalent_states();
return self.collapse_states(partition);
}
pub fn normalize(&self) -> RegexpDFA {
let n = self.alphabet_index.len();
let m = self.rules.len()/n;
let fail = m;
let mut index: Vec<usize> = vec![fail;m];
index[0] = 0;
let mut queue = VecDeque::from([START_DFA]);
let mut rules = vec![];
let mut k = 1;
while !queue.is_empty() {
let si = queue.pop_front().unwrap();
let row = &self.rules[si*n..(si+1)*n];
for &sj in row {
if sj != fail && index[sj] == fail {
index[sj] = k;
k += 1;
queue.push_back(sj);
}
}
rules.extend(row.iter().map(|&st| index[st]));
}
let end_states = self.end_states.iter().map(|st| index[*st]).collect();
return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()};
}
pub fn find_distinguishing_string(&self, other: &RegexpDFA) -> Option<String> {
if self.rules == other.rules && self.end_states == other.end_states {
return None;
}
let r1 = self.expand_alphabet(&other.alphabet_index);
let r2 = other.expand_alphabet(&self.alphabet_index);
let product = r1.build_product_automaton(&r2);
let n = product.alphabet_index.len();
let reverse_alphabet_index: HashMap<usize, char> = HashMap::from_iter(product.alphabet_index.iter().map(|(&k, &v)| (v, k)));
let mut queue = VecDeque::from([(0, "".to_string())]);
let mut visited = HashSet::new();
while !queue.is_empty() {
let (state, acc) = queue.pop_front().unwrap();
if product.end_states.contains(&state) {
return Some(acc);
}
for (i, target) in product.rules[state*n..(state+1)*n].iter().enumerate() {
if !visited.contains(target) {
queue.push_back((*target, acc.clone()+&String::from(reverse_alphabet_index[&i])));
visited.insert(target);
}
}
}
panic!();
}
fn find_equivalent_states(&self) -> Vec<HashSet<usize>> {
let n = self.alphabet_index.len();
let m = self.rules.len() / n;
let mut inverse_rules = vec![HashSet::<usize>::new();m*n];
for i in 0..m {
for j in 0..n {
let target = self.rules[i*n + j];
inverse_rules[target*n + j].insert(i);
}
}
let mut set_bag = vec![
self.end_states.clone(),
HashSet::from_iter(0..m).difference(&self.end_states).copied().collect()
];
let mut res = HashSet::<usize>::from([0, 1]);
let mut work = HashSet::<usize>::from([0, 1]);
while !work.is_empty() {
let key = *work.iter().next().unwrap();
work.remove(&key);
let target_set = set_bag[key].clone();
for j in 0..n {
let source_set = HashSet::<usize>::from_iter(target_set.iter().flat_map(|&t| inverse_rules[t*n+j].iter()).copied());
for k in res.clone().into_iter() {
let part = &set_bag[k];
let intersection = part.intersection(&source_set).copied().collect::<HashSet<usize>>();
let diff = part.difference(&source_set).copied().collect::<HashSet<usize>>();
if intersection.is_empty() || diff.is_empty() {
continue;
}
res.remove(&k);
let ki = set_bag.len();
set_bag.push(intersection);
res.insert(ki);
let kd = set_bag.len();
set_bag.push(diff);
res.insert(kd);
if work.contains(&k) {
work.remove(&k);
work.insert(ki);
work.insert(kd);
} else if set_bag[ki].len() < set_bag[kd].len() {
work.insert(ki);
} else {
work.insert(kd);
}
}
}
}
return Vec::from_iter(res.into_iter().map(|k| std::mem::take(&mut set_bag[k])));
}
fn collapse_states(&self, partition: Vec<HashSet<usize>>) -> RegexpDFA {
let n = self.alphabet_index.len();
let m = self.rules.len()/n;
let mut rules = vec![];
let mut eq_mapping: Vec<usize> = ((0..m)).collect();
for eq_set in partition.into_iter() {
let mut eq_vec = Vec::from_iter(eq_set.into_iter());
eq_vec.sort();
let label = eq_vec[0];
for st in eq_vec.into_iter() {
eq_mapping[st] = label;
}
}
let mut discard_mapping: Vec<usize> = ((0..m)).collect();
let mut discard_count = 0;
for si in 0..m {
if eq_mapping[si] != si {
discard_count += 1;
continue;
}
discard_mapping[si] = si-discard_count;
rules.extend(self.rules[si*n..(si+1)*n].iter().map(|&st| eq_mapping[st]));
}
rules = rules.into_iter().map(|st| discard_mapping[st]).collect();
let end_states = self.end_states.iter().map(|st| discard_mapping[eq_mapping[*st]]).collect();
return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()};
}
fn expand_alphabet(&self, alphabet_index: &HashMap<char, usize>) -> RegexpDFA {
if *alphabet_index == self.alphabet_index {
return self.clone();
}
let n1 = self.alphabet_index.len();
let m = self.rules.len() / n1;
let combined_alphabet: HashSet<char> = HashSet::from_iter(self.alphabet_index.keys().chain(alphabet_index.keys()).copied());
let mut combined_vec = Vec::from_iter(combined_alphabet.into_iter());
combined_vec.sort();
let combined_index = HashMap::from_iter(combined_vec.iter().enumerate().map(|(i, c)| (*c, i)));
let conversion_index: HashMap<usize, usize> = HashMap::from_iter(self.alphabet_index.iter().map(|(k, v)| (combined_index[k], *v)));
let n2 = combined_vec.len();
let rules: Vec<usize> = (0..m*n2).map(
|i| {
let (j, k) = (i/n2, i%n2);
return if conversion_index.contains_key(&k) {
self.rules[j*n1 + conversion_index[&k]]
} else {m};
}
).chain(std::iter::repeat(m).take(n2)).collect();
return RegexpDFA{rules, end_states: self.end_states.clone(), alphabet_index: combined_index}.reduce().normalize();
}
fn build_product_automaton(&self, other: &RegexpDFA) -> RegexpDFA {
let n = self.alphabet_index.len();
let m = other.rules.len() / n;
let k = self.rules.len() / n;
let mut rules = vec![];
let mut end_states = HashSet::new();
for s1 in 0..k {
let row1 = &self.rules[s1*n..(s1+1)*n];
for s2 in 0..m {
let row2 = &other.rules[s2*n..(s2+1)*n];
rules.extend(row1.iter().zip(row2.iter()).map(|(x, y)| x*m + y));
if (self.end_states.contains(&s1)) ^ (other.end_states.contains(&s2)) {
end_states.insert(s1*m + s2);
}
}
}
return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}.reduce().normalize();
}
}
|