Files
@ 08f1519c859e
Branch filter:
Location: Regular-Expresso/src/regexp.rs
08f1519c859e
12.6 KiB
application/rls-services+xml
added Rust documentation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | use std::{collections::{HashMap, HashSet, VecDeque}, iter};
mod token;
pub use token::ParsingError;
use token::parse;
const START_NFA: usize = usize::MAX;
const START_DFA: usize = 0;
/// A regular expression implemented as a non-deterministic finite automaton.
#[derive(Debug)]
pub struct RegexpNFA {
rules: HashMap<(usize, char), HashSet<usize>>,
end_states: HashSet<usize>,
alphabet: Vec<char>
}
impl RegexpNFA {
pub fn new(pattern: &String) -> Result<RegexpNFA, ParsingError> {
let r = parse(pattern, 0)?;
let pattern_chars = Vec::from_iter(pattern.chars());
let mut rules: HashMap<(usize, char), HashSet<usize>> = HashMap::new();
let mut alphabet: HashSet<char> = HashSet::new();
for i in r.list_first() {
let c = pattern_chars[i];
alphabet.insert(c);
let key = (START_NFA, c);
match rules.get_mut(&key) {
Some(set) => {set.insert(i);},
None => {rules.insert(key, HashSet::from([i]));}
};
}
for (i, j) in r.list_neighbours() {
let c = pattern_chars[j];
alphabet.insert(c);
let key = (i, c);
match rules.get_mut(&key) {
Some(set) => {set.insert(j);},
None => {rules.insert(key, HashSet::from([j]));}
};
}
let mut end_states = HashSet::from_iter(r.list_last().into_iter());
if r.is_skippable() {
end_states.insert(START_NFA);
}
let mut alphabet_vec = Vec::from_iter(alphabet.into_iter());
alphabet_vec.sort();
return Ok(RegexpNFA{rules, end_states, alphabet: alphabet_vec});
}
/// Decide if a string matches the regexp.
pub fn eval(&self, s: String) -> bool {
let mut multistate = HashSet::from([START_NFA]);
for c in s.chars() {
let mut new_multistate = HashSet::new();
for state in multistate {
if let Some(x) = self.rules.get(&(state, c)) {
new_multistate = new_multistate.union(&x).map(|&y| y).collect();
} else if let Some(x) = self.rules.get(&(state, '.')) {
new_multistate = new_multistate.union(&x).map(|&y| y).collect();
}
}
multistate = new_multistate;
}
return multistate.iter().any(|x| self.end_states.contains(x));
}
/// Convert the non-deterministic finite automaton into a deterministic one.
pub fn determinize(&self) -> RegexpDFA {
const FAIL: usize = usize::MAX;
let alphabet_index: HashMap<char, usize> = self.alphabet.iter().enumerate().map(|(i, c)| (*c, i)).collect();
let n = alphabet_index.len();
let mut compact_rules = vec![FAIL; n];
let mut end_states: HashSet<usize> = HashSet::new();
if self.end_states.contains(&START_NFA) {end_states.insert(START_DFA);}
// mapping the NFA state subsets -> DFA states
let mut index = HashMap::from([(vec![START_NFA], START_DFA)]);
let mut stack = vec![vec![START_NFA]];
while !stack.is_empty() {
let multistate = stack.pop().unwrap();
let mut new_rules: HashMap<char, HashSet<usize>> = HashMap::new();
// collect all possible destination states from the multistate
for key in self.rules.keys().filter(|(st, _c)| multistate.binary_search(st).is_ok()) {
let (_st, c) = key;
if !new_rules.contains_key(c) {
new_rules.insert(*c, HashSet::new());
}
for target in &self.rules[key] {
new_rules.get_mut(c).unwrap().insert(*target);
}
}
// build a row for the DFA transition function table
for (c, target_set) in new_rules.into_iter() {
let mut target_vec = Vec::from_iter(target_set.into_iter());
target_vec.sort();
let is_end = target_vec.iter().any(|st| self.end_states.contains(st));
if !index.contains_key(&target_vec) {
let target_new = index.len();
index.insert(target_vec.clone(), target_new);
compact_rules.extend(iter::repeat(FAIL).take(n));
stack.push(target_vec.clone());
}
compact_rules[index[&multistate]*n + alphabet_index[&c]] = index[&target_vec];
if is_end {
end_states.insert(index[&target_vec]);
}
}
}
// add a fail state, so the transition function is complete
let fail = index.len();
compact_rules = compact_rules.into_iter().map(|st| if st != FAIL {st} else {fail}).collect();
compact_rules.extend(iter::repeat(fail).take(n));
return RegexpDFA::new(compact_rules, end_states, alphabet_index);
}
}
/// A regular expression implemented as a deterministic finite automaton.
/// This simplifies support for more features compared to the NFA Regexp.
#[derive(Clone)]
pub struct RegexpDFA {
rules: Vec<usize>,
end_states: HashSet<usize>,
alphabet_index: HashMap<char, usize>
}
impl RegexpDFA {
/// Construct a DFA with the provided parameters, or a minimal DFA if the parameters are empty.
pub fn new(rules: Vec<usize>, end_states: HashSet<usize>, alphabet_index: HashMap<char, usize>) -> RegexpDFA {
if rules.len() > 0 {
return RegexpDFA{rules, end_states, alphabet_index};
} else {
// this saves us checking for an empty `alphabet_index` in other methods.
return RegexpDFA{
rules: vec![1, 1],
end_states,
alphabet_index: HashMap::from([('\0', 0)])
};
}
}
/// Decide if a string matches the regexp.
pub fn eval(&self, s: String) -> bool {
let n = self.alphabet_index.len();
let mut state = START_DFA;
for c in s.chars() {
if let Some(ci) = self.alphabet_index.get(&c) {
state = self.rules[state*n + ci];
} else {
return false;
}
}
return self.end_states.contains(&state);
}
/// Minimize the automaton by collapsing equivalent states.
pub fn reduce(&self) -> RegexpDFA {
let partition = self.find_equivalent_states();
return self.collapse_states(partition);
}
/// Normalize the automaton by relabeling the states in a breadth first search walkthrough order and remove unreachable states.
pub fn normalize(&self) -> RegexpDFA {
let n = self.alphabet_index.len();
let m = self.rules.len()/n;
let fail = m;
let mut index: Vec<usize> = vec![fail;m];
index[0] = 0;
let mut queue = VecDeque::from([START_DFA]);
let mut rules = vec![];
let mut k = 1;
while !queue.is_empty() {
let si = queue.pop_front().unwrap();
let row = &self.rules[si*n..(si+1)*n];
for &sj in row {
if sj != fail && index[sj] == fail {
index[sj] = k;
k += 1;
queue.push_back(sj);
}
}
rules.extend(row.iter().map(|&st| index[st]));
}
let end_states = self.end_states.iter().map(|st| index[*st]).collect();
return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()};
}
/// Find the shortest string that is accepted by self or `r`, but not both.
/// It is expected that the automatons are already reduced and normalized.
pub fn find_distinguishing_string(&self, other: &RegexpDFA) -> Option<String> {
if self.rules == other.rules && self.end_states == other.end_states {
return None;
}
let r1 = self.expand_alphabet(&other.alphabet_index);
let r2 = other.expand_alphabet(&self.alphabet_index);
let product = r1.build_product_automaton(&r2);
let n = product.alphabet_index.len();
// mapping letter keys -> letters
let inverse_alphabet_index: HashMap<usize, char> = HashMap::from_iter(product.alphabet_index.iter().map(|(&k, &v)| (v, k)));
// look for an accepting state with a BFS
let mut queue = VecDeque::from([(0, "".to_string())]);
let mut visited = HashSet::new();
while !queue.is_empty() {
let (state, acc) = queue.pop_front().unwrap();
if product.end_states.contains(&state) {
return Some(acc);
}
for (i, target) in product.rules[state*n..(state+1)*n].iter().enumerate() {
if !visited.contains(target) {
queue.push_back((*target, acc.clone()+&String::from(inverse_alphabet_index[&i])));
visited.insert(target);
}
}
}
panic!("Failed to detect the Regexps as equivalent and failed to find a distinguishing string.");
}
/// Partition states into their equivalence classes with Hopcroft's algorithm.
fn find_equivalent_states(&self) -> Vec<HashSet<usize>> {
let n = self.alphabet_index.len();
let m = self.rules.len() / n;
let mut inverse_rules = vec![HashSet::<usize>::new();m*n];
for i in 0..m {
for j in 0..n {
let target = self.rules[i*n + j];
inverse_rules[target*n + j].insert(i);
}
}
// store state subsets here so we can just pass around their indices
let mut set_bag = vec![
self.end_states.clone(),
HashSet::from_iter(0..m).difference(&self.end_states).copied().collect()
];
let mut res = HashSet::<usize>::from([0, 1]);
let mut work = HashSet::<usize>::from([0, 1]);
while !work.is_empty() {
let key = *work.iter().next().unwrap();
work.remove(&key);
let target_set = set_bag[key].clone();
for j in 0..n {
let source_set = HashSet::<usize>::from_iter(target_set.iter().flat_map(|&t| inverse_rules[t*n+j].iter()).copied());
for k in res.clone().into_iter() {
let part = &set_bag[k];
let intersection = part.intersection(&source_set).copied().collect::<HashSet<usize>>();
let diff = part.difference(&source_set).copied().collect::<HashSet<usize>>();
if intersection.is_empty() || diff.is_empty() {
continue;
}
res.remove(&k);
let ki = set_bag.len();
set_bag.push(intersection);
res.insert(ki);
let kd = set_bag.len();
set_bag.push(diff);
res.insert(kd);
if work.contains(&k) {
work.remove(&k);
work.insert(ki);
work.insert(kd);
} else if set_bag[ki].len() < set_bag[kd].len() {
work.insert(ki);
} else {
work.insert(kd);
}
}
}
}
return Vec::from_iter(res.into_iter().map(|k| std::mem::take(&mut set_bag[k])));
}
/// Collapse equivalent states from each partition class into a single state.
fn collapse_states(&self, partition: Vec<HashSet<usize>>) -> RegexpDFA {
let n = self.alphabet_index.len();
let m = self.rules.len()/n;
let mut rules = vec![];
// states mapping due to the equivalents collapse
let mut eq_mapping: Vec<usize> = ((0..m)).collect();
for eq_set in partition.into_iter() {
let mut eq_vec = Vec::from_iter(eq_set.into_iter());
eq_vec.sort();
let label = eq_vec[0];
for st in eq_vec.into_iter() {
eq_mapping[st] = label;
}
}
// states mapping to keep the rules list compact after the equivalents collapse
let mut discard_mapping: Vec<usize> = ((0..m)).collect();
let mut discard_count = 0;
for si in 0..m {
if eq_mapping[si] != si {
discard_count += 1;
continue;
}
discard_mapping[si] = si-discard_count;
rules.extend(self.rules[si*n..(si+1)*n].iter().map(|&st| eq_mapping[st]));
}
rules = rules.into_iter().map(|st| discard_mapping[st]).collect();
let end_states = self.end_states.iter().map(|st| discard_mapping[eq_mapping[*st]]).collect();
return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()};
}
/// Expand the automaton to accommodate union of `self.alphabet_index` and the provided `alphabet_index`.
fn expand_alphabet(&self, alphabet_index: &HashMap<char, usize>) -> RegexpDFA {
if *alphabet_index == self.alphabet_index {
return self.clone();
}
let n1 = self.alphabet_index.len();
let m = self.rules.len() / n1;
let combined_alphabet: HashSet<char> = HashSet::from_iter(self.alphabet_index.keys().chain(alphabet_index.keys()).copied());
let mut combined_vec = Vec::from_iter(combined_alphabet.into_iter());
combined_vec.sort();
// a new alphabet_index
let combined_index = HashMap::from_iter(combined_vec.iter().enumerate().map(|(i, c)| (*c, i)));
// a new letter key -> the old letter key
let conversion_index: HashMap<usize, usize> = HashMap::from_iter(self.alphabet_index.iter().map(|(k, v)| (combined_index[k], *v)));
let n2 = combined_vec.len();
// rewrite the rules into a new table, filling blanks with a new fail state
let rules: Vec<usize> = (0..m*n2).map(
|i| {
let (j, k) = (i/n2, i%n2);
return if conversion_index.contains_key(&k) {
self.rules[j*n1 + conversion_index[&k]]
} else {m};
}
).chain(std::iter::repeat(m).take(n2)).collect();
return RegexpDFA{rules, end_states: self.end_states.clone(), alphabet_index: combined_index}.reduce().normalize();
}
/// Create a new automaton, with a carthesian product of the arguments' states and corresponding transition rules.
fn build_product_automaton(&self, other: &RegexpDFA) -> RegexpDFA {
let n = self.alphabet_index.len();
let m = other.rules.len() / n;
let k = self.rules.len() / n;
let mut rules = vec![];
let mut end_states = HashSet::new();
// expand each self state into m new states, one for each of the `other` states
for s1 in 0..k {
let row1 = &self.rules[s1*n..(s1+1)*n];
for s2 in 0..m {
let row2 = &other.rules[s2*n..(s2+1)*n];
rules.extend(row1.iter().zip(row2.iter()).map(|(x, y)| x*m + y));
if (self.end_states.contains(&s1)) ^ (other.end_states.contains(&s2)) {
end_states.insert(s1*m + s2);
}
}
}
return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}.reduce().normalize();
}
}
|