Files
@ 0163ce5ddc96
Branch filter:
Location: Regular-Expresso/src/regexp.rs
0163ce5ddc96
5.3 KiB
application/rls-services+xml
added the automaton reduction
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | use std::collections::{HashMap, HashSet};
mod token;
pub use token::ParsingError;
use token::parse;
const START: usize = usize::MAX;
const FAIL: usize = START-1;
fn encode_set(set: &HashSet<usize>) -> u64 {
let mut res = 0;
for x in set.iter() {
res ^= 1<<x;
}
return res;
}
fn decode_set(x: u64) ->HashSet<usize> {
if x == START as u64 {return HashSet::from([START]);}
let mut x = x;
let mut res: HashSet<usize> = HashSet::new();
while x > 0 {
let y = x.trailing_zeros();
res.insert(y as usize);
x ^= 1 << y;
}
return res;
}
#[derive(Debug)]
pub struct Regexp {
rules: HashMap<(usize, char), HashSet<usize>>,
end_states: HashSet<usize>
}
impl Regexp {
pub fn new(pattern: &String) -> Result<Regexp, ParsingError> {
let r = parse(pattern, 0)?;
let pattern_chars = Vec::from_iter(pattern.chars());
let mut rules: HashMap<(usize, char), HashSet<usize>> = HashMap::new();
for i in r.list_first() {
let c = pattern_chars[i];
let key = (START, c);
match rules.get_mut(&key) {
Some(set) => {set.insert(i);},
None => {rules.insert(key, HashSet::from([i]));}
};
}
for (i, j) in r.list_neighbours() {
let c = pattern_chars[j];
let key = (i, c);
match rules.get_mut(&key) {
Some(set) => {set.insert(j);},
None => {rules.insert(key, HashSet::from([j]));}
};
}
let mut end_states = HashSet::from_iter(r.list_last().into_iter());
if r.is_skippable() {
end_states.insert(START);
}
return Ok(Regexp{rules, end_states});
}
pub fn eval(&self, s: String) -> bool {
let mut multistate = HashSet::from([START]);
for c in s.chars() {
let mut new_multistate = HashSet::new();
for state in multistate {
if let Some(x) = self.rules.get(&(state, c)) {
new_multistate = new_multistate.union(&x).map(|&y| y).collect();
} else if let Some(x) = self.rules.get(&(state, '.')) {
new_multistate = new_multistate.union(&x).map(|&y| y).collect();
}
}
multistate = new_multistate;
}
return multistate.iter().any(|x| self.end_states.contains(x));
}
pub fn determinize(&self) -> RegexpDFA {
let mut rules: HashMap<(u64, char), u64> = HashMap::new();
let mut end_states: HashSet<u64> = HashSet::new();
if self.end_states.contains(&START) {end_states.insert(START as u64);}
let mut stack = Vec::from([START as u64]);
let mut processed_states = HashSet::new();
while !stack.is_empty() {
let state = stack.pop().unwrap();
let multistate = decode_set(state);
let mut new_rules: HashMap<char, HashSet<usize>> = HashMap::new();
for key in self.rules.keys().filter(|key| multistate.contains(&key.0)) {
let (_st, c) = key;
if !new_rules.contains_key(c) {
new_rules.insert(*c, HashSet::new());
}
for target in &self.rules[key] {
new_rules.get_mut(c).unwrap().insert(*target);
}
}
for (c, target_set) in new_rules.into_iter() {
let encoded_target = encode_set(&target_set);
rules.insert((state, c), encoded_target);
if target_set.iter().any(|st| self.end_states.contains(st)) {
end_states.insert(encoded_target);
}
if !processed_states.contains(&encoded_target) {
stack.push(encoded_target);
processed_states.insert(encoded_target);
}
}
}
return RegexpDFA{rules, end_states};
}
}
pub struct RegexpDFA {
rules: HashMap<(u64, char), u64>,
end_states: HashSet<u64>
}
impl RegexpDFA {
pub fn eval(&self, s: String) -> bool {
let mut state = START as u64;
for c in s.chars() {
if let Some(x) = self.rules.get(&(state, c)) {
state = *x;
} else {
return false;
}
}
return self.end_states.contains(&state);
}
pub fn reduce(&self) -> RegexpDFA {
let equivalents = self.find_equivalent_states();
return self.collapse_states(equivalents);
}
fn find_equivalent_states(&self) -> Vec<(u64, u64)> {
let state_set: HashSet<u64> = HashSet::from_iter(self.rules.values().copied());
let mut state_vec: Vec<u64> = Vec::from_iter(state_set.into_iter());
state_vec.push(START as u64);
state_vec.push(FAIL as u64);
state_vec.sort();
state_vec.reverse();
let alphabet: HashSet<char> = self.rules.keys().map(|(_st, c)| c).copied().collect();
let mut equivalents = HashSet::new();
state_vec.iter().enumerate().for_each(|(i, s1)| {
equivalents.extend(
state_vec[i+1..].iter()
.filter(|s2| !(self.end_states.contains(s1)^self.end_states.contains(s2)))
.map(|s2| (*s1, *s2))
);
});
let mut n = usize::MAX;
while equivalents.len() < n {
n = equivalents.len();
equivalents = equivalents.iter().filter(|(s1, s2)| {
!alphabet.iter().any(|c| {
let t1 = self.rules.get(&(*s1, *c)).unwrap_or(&(FAIL as u64));
let t2 = self.rules.get(&(*s2, *c)).unwrap_or(&(FAIL as u64));
let key = (*t1.min(t2), *t1.max(t2));
return t1 != t2 && !equivalents.contains(&key);
})
}).copied().collect();
}
return Vec::from_iter(equivalents.into_iter());
}
fn collapse_states(&self, mut equivalents: Vec<(u64, u64)>) -> RegexpDFA {
let mut rules = self.rules.clone();
let mut end_states = self.end_states.clone();
equivalents.sort();
for (s1, s2) in equivalents.into_iter() {
rules = rules.into_iter()
.filter(|((st, _c), _t)| *st != s2)
.map(|(key, t)| (key, if t==s2 {s1} else {t})).collect();
end_states.remove(&s2);
}
return RegexpDFA{rules, end_states};
}
}
|