Files @ ecf98a415d97
Branch filter:

Location: OneEye/exp/kerokero/train.py

Laman
a different CNN architecture
import os
from time import time
import argparse
import logging as log

import numpy as np
from keras.layers import Conv2D,Dropout,Dense,Flatten,MaxPooling2D,BatchNormalization,GlobalAveragePooling2D
from keras.models import Sequential,load_model
from keras.callbacks import TensorBoard

import config as cfg
import ftp

parser=argparse.ArgumentParser()
parser.add_argument("data")
parser.add_argument("--load_model")
parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5")
parser.add_argument("--epochs",type=int,default=100)
parser.add_argument("--initial_epoch",type=int,default=0)
parser.add_argument("--log_dir",default="/tmp/tflogs")
args=parser.parse_args()


def createFullyConnected():
	model=Sequential([
		Flatten(input_shape=(224,224)),
		Dense(128, activation="relu"),
		Dropout(0.1),
		Dense(64, activation="relu"),
		Dense(8)
	])

	model.compile(
		optimizer='adam',
		loss='mse',
		metrics=['mae','accuracy']
	)
	return model

def createCNN():
	model=Sequential()

	model.add(BatchNormalization(input_shape=(224,224,1)))

	model.add(Conv2D(24,(5,5),border_mode="same",init="he_normal",activation="relu",input_shape=(224,224,1),dim_ordering="tf"))
	model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),border_mode="valid"))

	model.add(Conv2D(36,(5,5),activation="relu"))
	model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),border_mode="valid"))

	model.add(Conv2D(48,(5,5),activation="relu"))
	model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),border_mode="valid"))

	model.add(Conv2D(64,(3,3),activation="relu"))
	model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),border_mode="valid"))

	model.add(Conv2D(64,(3,3),activation="relu"))

	model.add(GlobalAveragePooling2D())

	model.add(Dense(500,activation="relu"))
	model.add(Dense(90,activation="relu"))
	model.add(Dense(8))

	model.compile(optimizer="rmsprop",loss="mse",metrics=["mae","accuracy"])
	return model


model=createCNN()
if args.load_model:
	model=load_model(args.load_model)

log.info("loading data...")
with np.load(args.data) as data:
	trainImages=data["trainImages"]
	trainLabels=data["trainLabels"]
	testImages=data["testImages"]
	testLabels=data["testLabels"]
log.info("done")

tensorboard = TensorBoard(log_dir=os.path.join(cfg.thisDir,"../logs","{}".format(time())))
BIG_STEP=20
for i in range(args.initial_epoch//BIG_STEP,args.epochs//BIG_STEP):
	model.fit(trainImages.reshape((-1,224,224,1)),trainLabels,epochs=(i+1)*BIG_STEP,initial_epoch=i*BIG_STEP,batch_size=20,validation_split=0.2,callbacks=[tensorboard])
	path=args.save_model.format((i+1)*BIG_STEP)
	log.info("saving model...")
	model.save(path)
	# ftp.push(path)
log.info(model.evaluate(testImages.reshape((-1,224,224,1)),testLabels))