Files
@ 6d4447a2e050
Branch filter:
Location: OneEye/exp/hough.py
6d4447a2e050
5.3 KiB
text/x-python
filtering close points, detecting dominant angles
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | import sys
sys.path.append("../src")
import os
import math
from datetime import datetime
import logging as log
import numpy as np
import cv2 as cv
from annotations import DataFile,computeBoundingBox
from analyzer.epoint import EPoint
class HoughTransform:
def __init__(self,img):
(h,w)=img.shape[:2]
diagLen=np.sqrt(h**2+w**2)
self._center=(w//2,h//2)
self._acc=np.zeros((360,int(diagLen//2)+1),dtype=np.int32)
self.update(img)
def extract(self):
maxVal=self._acc.max()
arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2)
img=np.concatenate((arr,arr,arr),axis=2)
peaks=sorted(list(findPeaks(self._acc)),key=lambda rc: self._acc[rc],reverse=True)[:2*19]
peaks=self._filterClose(peaks)
peaks=[(alpha,d) if alpha<180 else (alpha-180,-d) for (alpha,d) in peaks]
peaks.sort(key=lambda rc: rc[0])
log.debug("detected peaks: %s",peaks)
self._detectDominantAngles(peaks)
show(img,"Hough transform accumulator")
def update(self,img,weight=1):
start=datetime.now().timestamp()
for (r,row) in enumerate(img):
for (c,pix) in enumerate(row):
if pix==0: continue
for alphaDeg in range(0,360):
d=self._computeDist(c,r,alphaDeg)
if d>=0: self._acc[(alphaDeg,d)]+=weight
log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3))
def _computeDist(self,x,y,alphaDeg):
alphaRad=alphaDeg*math.pi/180
(x0,y0)=self._center
(dx,dy)=(x-x0,y-y0)
d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad)
return int(d)
def _filterClose(self,peaks): # a naive implementation
minDist=10
center=EPoint(*self._center)
res=[]
for (alphaDeg,d) in peaks:
alphaRad=alphaDeg*math.pi/180
point=EPoint.fromPolar((alphaRad,d),center)
ctrl=True
for (betaDeg,e) in peaks:
betaRad=betaDeg*math.pi/180
point_=EPoint.fromPolar((betaRad,e),center)
if point.dist(point_)<minDist and self._acc[(alphaDeg,d)]<self._acc[(betaDeg,e)]:
ctrl=False
if ctrl: res.append((alphaDeg,d))
return res
def _detectDominantAngles(self,peaks):
angles=[alpha for (alpha,d) in peaks]
n=len(angles)
bandwidth=30
k1=0
k2=1
histogram=[]
while k1<n:
while (k2<n and angles[k1]+bandwidth>angles[k2]) or (k2>=n and angles[k1]+bandwidth>angles[k2%n]+180):
k2+=1
histogram.append((angles[k1],k2-k1))
k1+=1
log.debug("angles histogram: %s",histogram)
dominantAngles=sorted(histogram,key=lambda xy: xy[1],reverse=True)
alpha=dominantAngles[0]
dominantAngles=[beta for beta in dominantAngles if 165>abs(alpha[0]-beta[0])>15]
beta=dominantAngles[0]
log.debug("dominant angles: %s, %s",alpha,beta)
return (alpha[0],beta[0])
def findPeaks(arr2d): # a naive implementation
(h,w)=arr2d.shape
neighbours=[(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
for r in range(h):
for c in range(w):
if all(r+dr<0 or r+dr>=h or c+dc<0 or c+dc>=w or arr2d[r,c]>arr2d[r+dr,c+dc] or (i<4 and arr2d[r,c]>=arr2d[r+dr,c+dc]) for (i,(dr,dc)) in enumerate(neighbours)):
yield (r,c)
def show(img,filename="x"):
cv.imshow(filename,img)
cv.waitKey(0)
cv.destroyAllWindows()
def filterVert(edges):
kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterHor(edges):
kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8)
edges = cv.erode(edges,kernel)
kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8)
edges=cv.dilate(edges,kernel)
return edges
def filterDiag(edges):
kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8)
edges1 = cv.erode(edges,kernel)
kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8)
edges1=cv.dilate(edges1,kernel)
kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8)
edges2 = cv.erode(edges,kernel)
kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8)
edges2=cv.dilate(edges2,kernel)
return edges1+edges2
def prepareEdgeImg(img):
gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
show(gray,"greyscale image")
edges=cv.Canny(gray,70,130)
show(edges,"Canny edge detector")
edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
show(edges,"kernel filtered edges")
return edges
def houghLines(bwImg):
colorImg=cv.cvtColor(bwImg,cv.COLOR_GRAY2BGR)
lines = cv.HoughLinesP(bwImg,1,np.pi/180,10,minLineLength=10,maxLineGap=40)
if lines is None: lines=[]
for line in lines:
x1,y1,x2,y2 = line[0]
cv.line(colorImg,(x1,y1),(x2,y2),(0,255,0),1)
show(colorImg)
if __name__=="__main__":
i=sys.argv[1]
annotations=DataFile("/home/laman/Projekty/python/oneEye/images/annotations.json.gz")
filename="{0}.jpg".format(i)
img=cv.imread(os.path.join("/home/laman/Projekty/python/oneEye/images/",filename))
(x1,y1,x2,y2)=computeBoundingBox(annotations[filename][0])
img=img[y1:y2, x1:x2, :]
# blurred=cv.GaussianBlur(img,(5,5),0)
# small=cv.resize(img,None,fx=0.5,fy=0.5,interpolation=cv.INTER_AREA)
small=img
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
gray=cv.cvtColor(small,cv.COLOR_BGR2GRAY)
# gray=clahe.apply(gray)
show(gray)
edges=cv.Canny(gray,70,130)
show(edges)
edges=filterHor(edges)+filterVert(edges)+filterDiag(edges)
show(edges)
# kernel = np.ones((2,2),np.uint8)
# edges = cv.morphologyEx(edges, cv.MORPH_DILATE, kernel)
# show(edges)
# edges=cv.morphologyEx(edges,cv.MORPH_ERODE,kernel)
# show(edges)
colorEdges=cv.cvtColor(edges,cv.COLOR_GRAY2BGR)
# houghLines(edges)
h=HoughTransform(edges)
h.extract()
|