Files
@ 5f42b982809c
Branch filter:
Location: OneEye/exp/kerokero/prepare_data.py
5f42b982809c
3.4 KiB
text/x-python
deferred data preprocessing saving space
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | import os
import sys
import re
import random
import numpy as np
import cv2 as cv
sys.path.append("..")
sys.path.append("../../src")
from annotations import DataFile,computeBoundingBox,Corners,EPoint
from geometry import Line
from kerokero.transformation_matrices import getIdentity,getRotation,getTranslation,getScale,getMirroring,getProjection
random.seed(361)
class Sample:
SIDE=224
def __init__(self,img,grid):
""":param img: a greyscale image as a 2D np.uint8
:param grid: iterable of 4 EPoints, ie. Corners"""
self.img=img
self.grid=grid
def transform(self):
""":return: (img, grid), where img is a 2D np.float32 with values in (0,1),
grid [(float) x, (float) y, ...], with x, y in (-1,1)"""
center=self._getCenter()
m=getIdentity()
t1=getTranslation(-center.x,-center.y)
proj=getProjection()
rot=getRotation()
mir=getMirroring()
for mi in [t1,mir,proj,rot]:
m=np.matmul(mi,m)
m=np.matmul(self._computeCrop(m),m)
img=cv.warpPerspective(self.img,m,(self.SIDE,self.SIDE))
img=np.uint8(img)
grid=Corners(c.transform(m) for c in self.grid)
grid=list(map(lambda p: list(2*p/self.SIDE-EPoint(1,1)), grid))
return (img,grid)
def _getCenter(self):
(a,b,c,d)=self.grid
p=Line.fromPoints(a,c)
q=Line.fromPoints(b,d)
return p.intersect(q)
def _computeCrop(self,m):
grid=Corners(c.transform(m) for c in self.grid)
(x1,y1,x2,y2)=computeBoundingBox(grid)
(wg,hg)=(x2-x1,y2-y1)
(left,top,right,bottom)=[random.uniform(0.05,0.2) for i in range(4)]
t2=getTranslation(left*wg-x1, top*hg-y1)
scale=getScale(self.SIDE/(wg*(1+left+right)), self.SIDE/(hg*(1+top+bottom)))
return np.matmul(scale,t2)
def show(self):
img=cv.cvtColor(self.img,cv.COLOR_GRAY2BGR)
for c in self.grid:
cv.circle(img,(int(c.x),int(c.y)),3,[0,255,0],-1)
show(img)
def traverseDirs(root):
stack=[root]
while len(stack)>0:
d=stack.pop()
contents=sorted(os.scandir(d),key=lambda f: f.name,reverse=True)
if any(f.name=="annotations.json.gz" for f in contents):
print(d)
yield d
for f in contents:
if f.is_dir(): stack.append(f.path)
def harvestDir(path):
annotations=DataFile(os.path.join(path,"annotations.json.gz"))
imgFilter=lambda f: f.is_file() and re.match(r".*\.(jpg|jpeg|png|gif)$", f.name.lower())
files=sorted(filter(imgFilter,os.scandir(path)),key=lambda f: f.name)
boards=annotations["."]
for f in files:
img=cv.imread(f.path)
img=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
for b in boards:
sample=Sample(img,b.grid)
# sample.show()
(transformedImg,label)=sample.transform()
# Sample(np.uint8((transformedImg+1)*128),map(lambda c: (c+EPoint(1,1))*Sample.SIDE/2,transformedGrid)).show()
yield (transformedImg,label)
def loadDataset(root):
testRatio=0.1
trainRatio=1-testRatio
images=[]
labels=[]
for d in traverseDirs(root):
for (img,label) in harvestDir(d):
images.append(img)
labels.append(label)
n=len(images)
keys=list(range(n))
random.shuffle(keys)
images=[images[k] for k in keys]
labels=[labels[k] for k in keys]
m=int(n*trainRatio)
return (
(np.uint8(images[:m]),np.float32(labels[:m])),
(np.uint8(images[m:]),np.float32(labels[m:]))
)
def show(img,filename="x"):
cv.imshow(filename,img)
cv.waitKey(0)
cv.destroyAllWindows()
if __name__=="__main__":
((trainImages,trainLabels),(testImages,testLabels))=loadDataset(sys.argv[1])
np.savez_compressed(
sys.argv[2],
trainImages=trainImages,
trainLabels=trainLabels,
testImages=testImages,
testLabels=testLabels
)
|