from util import EMPTY,BLACK,WHITE
from . import core
def transitionSequence(state1, state2, diff, limit=0):
return []
class SpecGo(core.Go):
def __init__(self,boardSize=19):
super().__init__(boardSize)
def listRelevantMoves(self,diff):
"""There can be 3 different changes in the diff: additions, deletions and replacements.
Additions can be taken as relevant right away.
Deletions and replacements had to be captured, so we add their liberties.
Also any non-missing stones of partially deleted (or replaced) groups had to be replayed, so add them too.
Needs to handle snapback, throw-in.
There's no end to what could be theoretically relevant, but such sequences are long and we will pretend they won't happen."""
res=(set(),set())
for d in diff:
(r,c,action,color)=d
colorKey=(1-color)>>1 # {-1,1}->{1,0}
if action!="-" and (r,c) not in res[colorKey]:
res[colorKey].add((r,c))
for (ri,ci) in self.listNeighbours(r,c): # in case a stone was played and captured. !! might want to add even more
res[1-colorKey].add((ri,ci))
# this is rather sloppy but correct. the time will show if it is effective enough
# just floodFill from the current intersection, add everything you find and also all the neighbours to be sure
if action!="+" and (r,c) not in res[colorKey] and (r,c) not in res[1-colorKey]:
self._helper.clear()
self._helper.floodFill(color if action=="-" else 1-color, r, c)
res[colorKey].union(self._helper.getContinuousArea())
for (ri,ci) in self._helper.getContinuousArea():
res[colorKey].add((ri,ci))
res[1-colorKey].add((ri,ci))
for (rj,cj) in self.listNeighbours(ri,ci):
res[colorKey].add((rj,cj))
res[1-colorKey].add((rj,cj))
return res
def listNeighbours(self,r,c):
if r>0: yield (r-1,c)
if r+1<self.boardSize: yield (r+1,c)
if c>0: yield (r,c-1)
if c+1<self.boardSize: yield (r,c+1)
class Engine:
def __init__(self,g=None):
self._g=g or SpecGo()
self._moveList=(set(),set())
def load(self,state1,diff):
self._g.load(state1)
self._moveList=self._g.listRelevantMoves(diff)
def iterativelyDeepen(self,state2,toMove=None):
for i in range(1,10):
for color in [toMove] if toMove else [BLACK,WHITE]:
self._g.toMove=color
seq=self.dfs(state2,i)
if seq:
seq.reverse()
return seq
def dfs(self,state2,limit):
g=self._g
moveSet=self._moveList[(1-g.toMove)>>1]
for (r,c) in moveSet.copy():
if g.board[r][c]!=EMPTY: continue
neighbours=(
g.board[r-1][c] if r>0 else None,
g.board[r+1][c] if r+1<g.boardSize else None,
g.board[r][c-1] if c>0 else None,
g.board[r][c+1] if c+1<g.boardSize else None
)
if not g.doMove(g.toMove,r,c): continue
moveSet.remove((r,c))
captured=tuple(
coords for (i,coords) in enumerate(((r-1,c),(r+1,c),(r,c-1),(r,c+1)))
if neighbours[i] is not None and neighbours[i]!=EMPTY and g.board[coords[0]][coords[1]]==EMPTY
)
if g.hash()==state2.hash():
g.undoMove(r,c,captured)
moveSet.add((r,c))
return [(g.toMove,r,c)]
if limit>1:
seq=self.dfs(state2,limit-1)
if seq:
g.undoMove(r,c,captured)
moveSet.add((r,c))
seq.append((g.toMove,r,c))
return seq
g.undoMove(r,c,captured)
moveSet.add((r,c))
return False
eng=Engine()