Files
@ c934d44cdf5c
Branch filter:
Location: OneEye/exp/kerokero/test.py - annotation
c934d44cdf5c
913 B
text/x-python
tensorboard logging, created a configuration file
655956f6ba89 c934d44cdf5c 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 c934d44cdf5c 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 9483b964f560 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 c934d44cdf5c 9483b964f560 9483b964f560 9483b964f560 9483b964f560 9483b964f560 c934d44cdf5c c934d44cdf5c c934d44cdf5c 655956f6ba89 655956f6ba89 dd45e200a0dc 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 655956f6ba89 | import argparse
import logging as log
import numpy as np
from keras.models import load_model
from prepare_data import loadDataset,Sample
from analyzer.epoint import EPoint
from analyzer.corners import Corners
import config as cfg
parser=argparse.ArgumentParser()
parser.add_argument("model")
parser.add_argument("data")
args=parser.parse_args()
model=load_model(args.model)
log.info("loading data...")
with np.load(args.data) as data:
trainImages=data["trainImages"]
trainLabels=data["trainLabels"]
testImages=data["testImages"]
testLabels=data["testLabels"]
log.info("done")
log.info(model.evaluate(testImages.reshape((-1,224,224,1)),testLabels))
for img in testImages:
label=model.predict(np.reshape(img,(1,224,224,1)))
print(label)
points=[]
for i in range(4):
points.append(EPoint(label[0][i*2],label[0][i*2+1]))
corners=Corners(points)
sample=Sample(np.uint8(img),corners)
sample.show()
|