import argparse import logging as log import numpy as np from keras.models import load_model from prepare_data import loadDataset,Sample from analyzer.epoint import EPoint from analyzer.corners import Corners import config as cfg parser=argparse.ArgumentParser() parser.add_argument("model") parser.add_argument("data") args=parser.parse_args() model=load_model(args.model) log.info("loading data...") with np.load(args.data) as data: trainImages=data["trainImages"] trainLabels=data["trainLabels"] testImages=data["testImages"] testLabels=data["testLabels"] log.info("done") log.info(model.evaluate(testImages.reshape((-1,224,224,1)),testLabels)) for img in testImages: label=model.predict(np.reshape(img,(1,224,224,1))) print(label) points=[] for i in range(4): points.append(EPoint(label[0][i*2],label[0][i*2+1])) corners=Corners(points) sample=Sample(np.uint8(img),corners) sample.show()