Files
@ 29f28718a69b
Branch filter:
Location: OneEye/exp/hakugen.py - annotation
29f28718a69b
1.3 KiB
text/x-python
transitional data processing
db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 db53fefbf557 | import os
import time
import argparse
import logging as log
import numpy as np
import keras
from keras.models import load_model
from PIL import Image,ImageDraw
from epoint import EPoint
import exp_config as cfg
from kerokero.k_util import averageDistance
keras.losses.averageDistance=averageDistance
keras.metrics.averageDistance=averageDistance
model=load_model(cfg.hakugenModel)
def locateGrid(img):
t1=time.time()
(width,height)=img.size
normedImg=img.convert("L")
npImg=np.array(normedImg.getdata()).reshape((224,224,1)).astype(np.float32)
npImg=npImg/128-1
label=model.predict(np.reshape(npImg,(1,224,224,1)))
points=[]
for i in range(4):
points.append(EPoint((label[0][i][0]+1)*(width/2),(label[0][i][1]+1)*(height/2)))
t=time.time()-t1
log.info("grid located in {0:.3}s".format(t))
return points
if __name__=="__main__":
parser=argparse.ArgumentParser()
parser.add_argument("-i","--input",nargs="+")
parser.add_argument("-o","--output_dir",required=True)
args=parser.parse_args()
for image_path in args.input:
image=Image.open(image_path)
points=locateGrid(image)
drawer=ImageDraw.Draw(image)
for p in points:
drawer.ellipse((p.x-2,p.y-2,p.x+2,p.y+2),fill="#00ff00")
image.save(os.path.join(args.output_dir,os.path.basename(image_path)))
|