import os import time import argparse import logging as log import numpy as np import keras from keras.models import load_model from PIL import Image,ImageDraw from epoint import EPoint import exp_config as cfg from kerokero.k_util import averageDistance keras.losses.averageDistance=averageDistance keras.metrics.averageDistance=averageDistance model=load_model(cfg.hakugenModel) def locateGrid(img): t1=time.time() (width,height)=img.size normedImg=img.convert("L") npImg=np.array(normedImg.getdata()).reshape((224,224,1)).astype(np.float32) npImg=npImg/128-1 label=model.predict(np.reshape(npImg,(1,224,224,1))) points=[] for i in range(4): points.append(EPoint((label[0][i][0]+1)*(width/2),(label[0][i][1]+1)*(height/2))) t=time.time()-t1 log.info("grid located in {0:.3}s".format(t)) return points if __name__=="__main__": parser=argparse.ArgumentParser() parser.add_argument("-i","--input",nargs="+") parser.add_argument("-o","--output_dir",required=True) args=parser.parse_args() for image_path in args.input: image=Image.open(image_path) points=locateGrid(image) drawer=ImageDraw.Draw(image) for p in points: drawer.ellipse((p.x-2,p.y-2,p.x+2,p.y+2),fill="#00ff00") image.save(os.path.join(args.output_dir,os.path.basename(image_path)))