import os
import random
import itertools
import json
import gzip
from .predict import preprocess, identify, extract_ngram_freqs, rank_ngram_freqs, Sample
random.seed(19181028)
CROSSVALIDATION_SOURCE_COUNT = 5
TEST_LENS = [8, 16, 32, 64]
def merge_ngram_freqs(freqs):
n = len(freqs)
res = dict()
for d in freqs:
for (key, val) in d.items():
res.setdefault(key, 0)
res[key] += val/n
return res
class SampleSet:
def __init__(self, language):
self.language = language
self.texts = []
self.frequencies = []
def add(self, text):
self.texts.append(text)
self.frequencies.append(extract_ngram_freqs(text))
def create_model(self):
merged_frequencies = merge_ngram_freqs(self.frequencies)
res = Sample(self.language, rank_ngram_freqs(merged_frequencies))
return res
def generate_tests(self, n):
for (i, (text, freqs)) in enumerate(itertools.cycle(zip(self.texts, self.frequencies))):
if i >= n:
break
ranked_ngrams = rank_ngram_freqs(merge_ngram_freqs([f for f in self.frequencies if f is not freqs]))
yield (text, Sample(self.language, ranked_ngrams))
def cross_validate(sample_sets):
models = [s.create_model() for s in sample_sets]
score = 0
max_score = 0
for s in sample_sets:
for (test_text, partial_model) in s.generate_tests(CROSSVALIDATION_SOURCE_COUNT):
real_lang = partial_model.language
test_models = [partial_model] + [m for m in models if m.language != real_lang]
for k in TEST_LENS:
for i in range(10):
j = random.randrange(0, len(test_text)-k)
t = test_text[j:j+k]
predicted_lang = identify(t, test_models)
if predicted_lang == real_lang:
score += 1
else:
print(real_lang, predicted_lang, t)
max_score += 1
return score / max_score, (score, max_score)
DATA_DIR = os.path.join(os.path.dirname(__file__), "../../data")
LANG_DIRS = sorted([x.path for x in os.scandir(DATA_DIR)])
MODEL_PATH = os.path.join(os.path.dirname(__file__), "models.json.gz")
if __name__ == "__main__":
samples = []
for d in LANG_DIRS:
lang = os.path.basename(d)
lang_samples = SampleSet(lang)
samples.append(lang_samples)
for file in sorted(os.scandir(d), key=lambda f: f.name):
with open(file) as f:
text = f.read()
text = preprocess(text)
print(f"{lang}: {file.name} ({len(text)})")
lang_samples.add(text)
with gzip.open(MODEL_PATH, mode="wt", encoding="utf-8") as f:
json.dump([sample_set.create_model().export() for sample_set in samples], f, ensure_ascii=False)
print(cross_validate(samples))