Files
@ 6fce04d6aa8d
Branch filter:
Location: Languedoc/languedoc.py
6fce04d6aa8d
3.8 KiB
text/x-python
SampleSet and crossvalidation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | import os
import re
import random
import itertools
random.seed(19181028)
TEST_LENS = [8, 16, 32, 64]
def preprocess(text):
text = re.sub(r"[\W\d_]+", " ", " "+text+" ")
return text.lower()
def extract_ngram_freqs(text, k):
n = len(text)
d = dict()
for i in range(0, n-k+1):
key = text[i:i+k]
if key.isspace():
continue
d[key] = d.get(key, 0) + 1
count = sum(d.values())
return {key: val/count for (key, val) in d.items()}
def merge_ngram_freqs(freqs):
n = len(freqs)
res = dict()
for d in freqs:
for (key, val) in d.items():
res.setdefault(key, 0)
res[key] += val/n
return res
class Sample:
def __init__(self, language="??", text=""):
self.language = language
self.frequencies = [dict(), dict(), dict()]
if text:
self._extract(text)
def _extract(self, text):
for k in range(1, 4):
self.frequencies[k-1] = extract_ngram_freqs(text, k)
@staticmethod
def merge(samples):
assert len({x.language for x in samples}) == 1
res = Sample(samples[0].language)
res.frequencies = []
for freqs in zip(*(x.frequencies for x in samples)):
res.frequencies.append(merge_ngram_freqs(freqs))
return res
def compare(self, other):
"""take k most common
use frequencies x order
use letter, digrams, trigrams
use absolute x square"""
ordered_own_trigrams = sorted(self.frequencies[2].items(), key=lambda kv: -kv[1])[:400]
ordered_other_trigrams = sorted(other.frequencies[2].items(), key=lambda kv: -kv[1])[:400]
ranked_own_trigrams = dict(zip([key for (key, freq) in ordered_own_trigrams], itertools.count(0)))
ranked_other_trigrams = dict(zip([key for (key, freq) in ordered_other_trigrams], itertools.count(0)))
res = sum(abs(v-ranked_other_trigrams.get(k, 400)) for (k, v) in ranked_own_trigrams.items()) + \
sum(abs(v-ranked_own_trigrams.get(k, 400)) for (k, v) in ranked_other_trigrams.items())
print(">", self.language, res)
return res
def print_overview(self):
print(f"Sample({self.language}):")
for freqs in self.frequencies:
x = [
(k, round(v, 3))
for (k, v) in sorted(freqs.items(), key=lambda kv: -kv[1])
]
print(" ", x[:8], "...", x[-8:])
print()
class SampleSet:
def __init__(self, language):
self.language = language
self.texts = []
self.samples = []
def add(self, text):
self.texts.append(text)
self.samples.append(Sample(self.language, text))
def create_model(self):
return Sample.merge(self.samples)
def generate_tests(self):
for (text, sample) in zip(self.texts, self.samples):
yield (text, Sample.merge([x for x in self.samples if x is not sample]))
def cross_validate(sample_sets):
models = [s.create_model() for s in sample_sets]
score = 0
max_score = 0
for s in sample_sets:
for (test_text, partial_model) in s.generate_tests():
partial_model.print_overview()
real_lang = partial_model.language
test_models = [partial_model] + [m for m in models if m.language != real_lang]
for k in TEST_LENS:
j = random.randrange(0, len(test_text)-k)
t = test_text[j:j+k]
predicted_lang = identify(t, test_models)
print(real_lang, predicted_lang, t)
if predicted_lang == real_lang:
score += 1
max_score += 1
return score / max_score, (score, max_score)
def identify(text, models):
sample = Sample(text=text)
return min(map(lambda m: (m.compare(sample), m.language), models))[1]
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
LANG_DIRS = [x.path for x in os.scandir(DATA_DIR)]
if __name__ == "__main__":
samples = []
for d in LANG_DIRS:
lang = os.path.basename(d)
lang_samples = SampleSet(lang)
samples.append(lang_samples)
for file in os.scandir(d):
with open(file) as f:
text = f.read()
text = preprocess(text)
print(f"{file.name} ({len(text)})")
print(text[:256])
print()
lang_samples.add(text)
print(cross_validate(samples))
|