import os
import re
import random
random.seed(19181028)
def preprocess(text):
text = re.sub(r"[\W\d_]+", " ", " "+text+" ")
return text.lower()
def extract_ngram_freqs(text, k):
n = len(text)
d = dict()
for i in range(0, n-k):
key = text[i:i+k]
if key.isspace():
continue
d[key] = d.get(key, 0) + 1
count = sum(d.values())
return {key: val/count for (key, val) in d.items()}
def merge_ngram_freqs(freqs):
n = len(freqs)
res = dict()
for d in freqs:
for (key, val) in d.items():
res.setdefault(key, 0)
res[key] += val/n
return res
class Sample:
def __init__(self, language="??", text=""):
self.language = language
self.frequencies = [dict(), dict(), dict()]
if text:
self._extract(text)
def _extract(self, text):
for k in range(1, 4):
self.frequencies[k-1] = extract_ngram_freqs(text, k)
@staticmethod
def merge(samples):
assert len({x.language for x in samples}) == 1
res = Sample(samples[0].language)
res.frequencies = []
for freqs in zip(*(x.frequencies for x in samples)):
res.frequencies.append(merge_ngram_freqs(freqs))
return res
def compare(self, other):
pass
def print_overview(self):
print(f"Sample({self.language}):")
for freqs in self.frequencies:
x = [
(k, round(v, 3))
for (k, v) in sorted(freqs.items(), key=lambda kv: -kv[1])
]
print(" ", x[:8], "...", x[-8:])
print()
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
LANG_DIRS = [x.path for x in os.scandir(DATA_DIR)]
models = dict()
for d in LANG_DIRS:
lang = os.path.basename(d)
samples = []
for file in os.scandir(d):
with open(file) as f:
text = f.read()
text = preprocess(text)
print(f"{file.name} ({len(text)})")
print(text[:256])
print()
samples.append(Sample(lang, text))
samples[-1].print_overview()
models[lang] = Sample.merge(samples)
models[lang].print_overview()