import os
import re
import random
random.seed(19181028)
def preprocess(text):
text = re.sub(r"[\W\d]+", " ", text)
return text.lower()
def extract_ngram_freqs(text, k):
n = len(text)
d = dict()
for i in range(0, n-k):
key = text[i:i+k]
if key.isspace():
continue
d[key] = d.get(key, 0) + 1
count = sum(d.values())
return {key: val/count for (key, val) in d.items()}
def merge_ngram_freqs(freqs):
n = len(freqs)
res = dict()
for d in freqs:
for (key, val) in d.items():
res.setdefault(key, 0)
res[key] += val/n
return res
DATA_DIR = os.path.join(os.path.dirname(__file__), "data")
LANG_DIRS = [x.path for x in os.scandir(DATA_DIR)]
for d in LANG_DIRS:
models = [[], [], []]
for file in os.scandir(d):
with open(file) as f:
text = f.read()
text = preprocess(text)
print(f"{file.name} ({len(text)})")
print(text[:256])
print()
for k in range(1, 4):
models[k-1].append(extract_ngram_freqs(text, k))
models = [merge_ngram_freqs(sources) for sources in models]
print(sorted(((key, round(val, 3)) for (key, val) in models[0].items()), key=lambda kv: -kv[1]))
print(sorted(((key, round(val, 3)) for (key, val) in models[1].items()), key=lambda kv: -kv[1]))