"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic""" def _gfmul(a,b): """Basic multiplication. Russian peasant algorithm.""" res=0 while a and b: if b&1: res^=a if a&0x80: a=0xff&(a<<1)^0x1b else: a<<=1 b>>=1 return res g=3 # generator E=[None]*256 # exponentials L=[None]*256 # logarithms acc=1 for i in range(256): E[i]=acc L[acc]=i acc=_gfmul(acc, g) L[1]=0 inv=[E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse def gfmul(a, b): """Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))""" assert 0<=a<=255, 0<=b<=255 if a==0 or b==0: return 0 t=L[a]+L[b] if t>255: t-=255 return E[t] def evaluate(coefs,x): """Evaluate polynomial's value at x. :param coefs: [a0, a1, ...].""" res=0 xK=1 for a in coefs: res^=gfmul(a,xK) xK=gfmul(xK,x) return res def getConstantCoef(*points): """Compute constant polynomial coefficient given the points. See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach""" k=len(points) res=0 for i in range(k): (x,y)=points[i] prod=1 for j in range(k): if i==j: continue (xj,yj)=points[j] prod=gfmul(prod, (gfmul(xj,inv[xj^x]))) res^=gfmul(y,prod) return res