# GNU GPLv3, see LICENSE import random import functools import operator from unittest import TestCase from ..gf256 import evaluate from ..fft import * def batch_evaluate(coefs, xs): return [evaluate(coefs, x) for x in xs] class TestFFT(TestCase): def test_complex_dft(self): self.assertEqual(complex_dft([0]), [0+0j]) self.assertEqual(complex_dft([1]), [1+0j]) self.assertEqual(complex_dft([2]), [2+0j]) all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1]), [4+0j, 2+0j])) all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1, 4]), [8+0j, 0.5+2.59807621j, 0.5-2.59807621j])) all(self.assertAlmostEqual(a, b) for (a, b) in zip(complex_dft([3, 1, 4, 1]), [9+0j, -1+0j, 5+0j, -1+0j])) all(self.assertAlmostEqual(a, b) for (a, b) in zip( complex_dft([3, 1, 4, 1, 5]), [14+0j, 0.80901699+2.04087031j, -0.30901699+5.20431056j, -0.30901699-5.20431056j, 0.80901699-2.04087031j] )) def test_complex_prime_fft(self): random.seed(1918) for divisors in [[3], [2, 3], [3, 5], [3, 5, 17], [2, 3, 5, 7, 11]]: n = functools.reduce(operator.mul, divisors) coefficients = [random.randint(-128, 127) for i in range(n)] a = prime_fft(coefficients, divisors, complex_dft) b = complex_dft(coefficients) all(self.assertAlmostEqual(ai, bi) for (ai, bi) in zip(a, b)) def test_finite_dft(self): random.seed(1918) x = {i: precompute_x(i) for i in [3, 5, 15, 17]} # all sets of xs for n in [3, 5, 15, 17]: coefficients = [random.randint(0, 255) for i in range(n)] self.assertEqual( dft(coefficients), batch_evaluate(coefficients[::-1], x[n]) ) def test_finite_prime_fft(self): random.seed(1918) for divisors in [[3], [3, 5], [3, 17], [5, 17], [3, 5, 17]]: n = functools.reduce(operator.mul, divisors) coefficients = [random.randint(0, 255) for i in range(n)] a = prime_fft(coefficients, divisors) b = dft(coefficients) all(self.assertAlmostEqual(ai, bi) for (ai, bi) in zip(a, b))