diff --git a/src/shamira/fft.py b/src/shamira/fft.py new file mode 100644 --- /dev/null +++ b/src/shamira/fft.py @@ -0,0 +1,95 @@ +import math +import cmath +import itertools + +from .gf256 import gfmul, gfpow + +# divisors of 255 and their factors in natural numbers +DIVISORS = [3, 5, 15, 17, 51, 85, 255] +FACTORS = {3: [3], 5: [5], 15: [3, 5], 17: [17], 51: [3, 17], 85: [5, 17], 255: [3, 5, 17]} +# values of n-th square roots in GF256 +SQUARE_ROOTS = {3: 189, 5: 12, 15: 225, 17: 53, 51: 51, 85: 15, 255: 3} + + +def ceil_size(n): + assert n <= DIVISORS[-1] + for (i, ni) in enumerate(DIVISORS): + if ni >= n: + break + + return ni + + +def precompute_x(n): + """Return a geometric sequence [1, w, w**2, ..., w**(n-1)], where w**n==1. + This can be done only for certain values of n.""" + assert n in SQUARE_ROOTS, n + w = SQUARE_ROOTS[n] # primitive N-th square root of 1 + return list(itertools.accumulate([1]+[w]*(n-1), gfmul)) + + +def complex_dft(p): + """Quadratic formula from the definition. The basic case in complex numbers.""" + N = len(p) + w = cmath.exp(-2*math.pi*1j/N) # primitive N-th square root of 1 + y = [0]*N + for k in range(N): + xk = w**k + for n in range(N): + y[k] += p[n] * xk**n + return y + + +def dft(p): + """Quadratic formula from the definition. In GF256.""" + N = len(p) + x = precompute_x(N) + y = [0]*N + for k in range(N): + for n in range(N): + y[k] ^= gfmul(p[n], gfpow(x[k], n)) + return y + + +def compute_inverse(N1, N2): + for i in range(N2): + if N1*i % N2 == 1: + return i + raise ValueError("Failed to find an inverse to {0} mod {1}.".format(N1, N2)) + + +def prime_fft(p, divisors, basic_dft=dft): + """https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm""" + if len(divisors) == 1: + return basic_dft(p) + N = len(p) + N1 = divisors[0] + N2 = N//N1 + N1_inv = compute_inverse(N1, N2) + N2_inv = compute_inverse(N2, N1) + + ys = [] + for n1 in range(N1): # compute rows + p_ = [p[(n2*N1+n1*N2) % N] for n2 in range(N2)] + ys.append(prime_fft(p_, divisors[1:], basic_dft)) + + for k2 in range(N2): # compute cols + p_ = [row[k2] for row in ys] + y_ = basic_dft(p_) + for (yi, row) in zip(y_, ys): # update col + row[k2] = yi + + # remap and output + res = [0]*N + for k1 in range(N1): + for k2 in range(N2): + res[(k1*N2*N2_inv+k2*N1*N1_inv) % N] = ys[k1][k2] + return res + + +def evaluate(coefs, n): + ni = ceil_size(n) + extended_coefs = coefs + [0]*(ni-len(coefs)) + ys = prime_fft(extended_coefs, FACTORS[ni]) + + return ys[:n]