Changeset - a47ae3e113cc
[Not reviewed]
default
0 5 0
Laman - 5 years ago 2020-05-03 21:25:23

optimized the generation operation
5 files changed with 15 insertions and 14 deletions:
0 comments (0 inline, 0 general)
readme.md
Show inline comments
 
@@ -21,22 +21,22 @@ Benchmark results, all values mean _seco
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a Raspberry Pi 3)</td>
 
        <td>8.32e-05</td>
 
        <td>6.08e-05</td>
 
        <td>0.000435</td>
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a laptop)</td>
 
        <td>1.09e-05</td>
 
        <td>8.7e-06</td>
 
        <td>7.17e-05</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a Raspberry Pi 3)</td>
 
        <td>0.414</td>
 
        <td>0.226</td>
 
        <td>0.0314</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a laptop)</td>
 
        <td>0.0435</td>
 
        <td>0.0209</td>
 
        <td>0.00347</td>
 
    </tr>
 
</table>
src/shamira/core.py
Show inline comments
 
@@ -19,7 +19,7 @@ def _share_byte(secret_b, k, n):
 
	if not k<=n<255:
 
		raise InvalidParams("Failed k<=n<255, k={0}, n={1}".format(k, n))
 
	# we might be concerned with zero coefficients degenerating our polynomial, but there's no reason - we still need k shares to determine it is the case
 
	coefs = [int(secret_b)]+[int(b) for b in os.urandom(k-1)]
 
	coefs = [int(b) for b in os.urandom(k-1)]+[int(secret_b)]
 
	points = [gf256.evaluate(coefs, i) for i in range(1, n+1)]
 
	return points
 

	
src/shamira/gf256.py
Show inline comments
 
@@ -41,12 +41,13 @@ def gfmul(a, b):
 
def evaluate(coefs, x):
 
	"""Evaluate polynomial's value at x.
 

	
 
	:param coefs: [a0, a1, ...]."""
 
	:param coefs: [an, ..., a1, a0]."""
 
	res = 0
 
	xk = 1
 
	for a in coefs:
 
		res ^= gfmul(a, xk)
 
		xk = gfmul(xk, x)
 

	
 
	for a in coefs:  # Horner's rule
 
		res = gfmul(res, x)
 
		res ^= a
 

	
 
	return res
 

	
 

	
src/shamira/tests/test_condensed.py
Show inline comments
 
@@ -52,7 +52,7 @@ class TestCondensed(TestCase):
 
		coefs = [random.randint(0, 255) for i in range(k)]
 
		points = [(j, evaluate(coefs, j)) for j in range(1, 256)]
 
		random.shuffle(points)
 
		return (get_constant_coef(*points[:m]), coefs[0])
 
		return (get_constant_coef(*points[:m]), coefs[-1])
 

	
 
	def test_generate_reconstruct_raw(self):
 
		for (k, n) in [(2, 3), (254, 254)]:
src/shamira/tests/test_gf256.py
Show inline comments
 
@@ -26,8 +26,8 @@ class TestGF256(TestCase):
 
		for x in range(256):
 
			(a0, a1, a2, a3) = (x, x>>1, x>>2, x>>3)
 
			self.assertEqual(evaluate([17], x), 17)  # constant polynomial
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 0), x)  # any polynomial at 0
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
 
			self.assertEqual(evaluate([a3, a2, a1, a0], 0), x)  # any polynomial at 0
 
			self.assertEqual(evaluate([a3, a2, a1, a0], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
 

	
 
	def test_get_constant_coef(self):
 
		weights = compute_weights((1, 2, 3))
 
@@ -60,7 +60,7 @@ class TestGF256(TestCase):
 

	
 
		(xs, ys) = zip(*points[:m])
 
		weights = compute_weights(xs)
 
		return (get_constant_coef(weights, ys), coefs[0])
 
		return (get_constant_coef(weights, ys), coefs[-1])
 

	
 

	
 
if __name__=='__main__':
0 comments (0 inline, 0 general)