Changeset - a47ae3e113cc
[Not reviewed]
default
0 5 0
Laman - 5 years ago 2020-05-03 21:25:23

optimized the generation operation
5 files changed with 15 insertions and 14 deletions:
0 comments (0 inline, 0 general)
readme.md
Show inline comments
 
# Shamira #
 

	
 
Implements [Shamir's secret sharing algorithm](https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing). Splits a string or a byte sequence byte-per-byte into _n_<255 shares, with any _k_ of them sufficient for reconstruction of the original input.
 

	
 
Outputs the shares as hexadecimal, Base32 or Base64 encoded strings.
 

	
 
## Installation and usage ##
 

	
 
Can be run straight from the cloned repository by executing the package with `python -m shamira` or simply installed with `python setup.py build`, `python setup.py install`. Then imported in your code with `import shamira` or run from the command line with `shamira`.
 

	
 
## Performance ##
 

	
 
As it is, the code is not very fast. Let's assume we have a secret of length _m_. For each byte, the splitting takes _n_ evaluations of a polynomial of order _k_ over Galois field 256, leading to _O(n\*k\*m)_ finite field multiplications. Reconstruction of the constant parameters during joining takes _O(k\*k + k\*m)_ multiplications.
 

	
 
Benchmark results, all values mean _seconds per byte_ of the secret length:
 
<table>
 
    <tr>
 
        <th>k / n parameters</th>
 
        <th>Split</th>
 
        <th>Join</th>
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a Raspberry Pi 3)</td>
 
        <td>8.32e-05</td>
 
        <td>6.08e-05</td>
 
        <td>0.000435</td>
 
    </tr>
 
    <tr>
 
        <td>2 / 3 (a laptop)</td>
 
        <td>1.09e-05</td>
 
        <td>8.7e-06</td>
 
        <td>7.17e-05</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a Raspberry Pi 3)</td>
 
        <td>0.414</td>
 
        <td>0.226</td>
 
        <td>0.0314</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254 (a laptop)</td>
 
        <td>0.0435</td>
 
        <td>0.0209</td>
 
        <td>0.00347</td>
 
    </tr>
 
</table>
 

	
 
While the speeds are not awful, for longer secrets I recommend encrypting them with a random key of your choice and splitting only the key. Anyway, you can run your own benchmark with `shamira benchmark`
src/shamira/core.py
Show inline comments
 
# GNU GPLv3, see LICENSE
 

	
 
import os
 
import re
 
import base64
 
import binascii
 

	
 
from . import gf256
 

	
 

	
 
class SException(Exception): pass
 
class InvalidParams(SException): pass
 
class DetectionException(SException): pass
 
class DecodingException(SException): pass
 
class MalformedShare(SException): pass
 

	
 

	
 
def _share_byte(secret_b, k, n):
 
	if not k<=n<255:
 
		raise InvalidParams("Failed k<=n<255, k={0}, n={1}".format(k, n))
 
	# we might be concerned with zero coefficients degenerating our polynomial, but there's no reason - we still need k shares to determine it is the case
 
	coefs = [int(secret_b)]+[int(b) for b in os.urandom(k-1)]
 
	coefs = [int(b) for b in os.urandom(k-1)]+[int(secret_b)]
 
	points = [gf256.evaluate(coefs, i) for i in range(1, n+1)]
 
	return points
 

	
 

	
 
def generate_raw(secret, k, n):
 
	"""Splits secret into shares.
 

	
 
	:param secret: (bytes)
 
	:param k: number of shares necessary for secret recovery. 1 <= k <= n
 
	:param n: (int) number of shares generated. 1 <= n < 255
 
	:return: [(i, (bytes) share), ...]"""
 
	shares = [_share_byte(b, k, n) for b in secret]
 
	return [(i+1, bytes([s[i] for s in shares])) for i in range(n)]
 

	
 

	
 
def reconstruct_raw(*shares):
 
	"""Tries to recover the secret from its shares.
 

	
 
	:param shares: (((int) i, (bytes) share), ...)
 
	:return: (bytes) reconstructed secret. Too few shares return garbage."""
 
	if len({x for (x, _) in shares}) < len(shares):
 
		raise MalformedShare("Found a non-unique share. Please check your inputs.")
 

	
 
	(xs, payloads) = zip(*shares)
 
	secret_len = len(payloads[0])
 
	res = [None]*secret_len
 
	weights = gf256.compute_weights(xs)
 
	for i in range(secret_len):
 
		ys = [s[i] for s in payloads]
 
		res[i] = (gf256.get_constant_coef(weights, ys))
 
	return bytes(res)
 

	
 

	
 
def generate(secret, k, n, encoding="b32", label="", omit_k_n=False):
 
	"""Wraps generate_raw().
 

	
 
	:param secret: (str or bytes)
 
	:param k: number of shares necessary for secret recovery
 
	:param n: number of shares generated
 
	:param encoding: {hex, b32, b64} desired output encoding. Hexadecimal, Base32 or Base64.
 
	:param label: (str) any label to prefix the shares with
 
	:param omit_k_n: (boolean) suppress the default shares prefix
 
	:return: [(str) share, ...]"""
 
	if isinstance(secret,str):
 
		secret = secret.encode("utf-8")
 
	shares = generate_raw(secret, k, n)
 

	
 
	prefix = ""
src/shamira/gf256.py
Show inline comments
 
# GNU GPLv3, see LICENSE
 

	
 
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
 

	
 
from functools import reduce
 
import operator
 

	
 

	
 
def _gfmul(a, b):
 
	"""Basic multiplication. Russian peasant algorithm."""
 
	res = 0
 
	while a and b:
 
		if b&1: res ^= a
 
		if a&0x80: a = 0xff&(a<<1)^0x1b
 
		else: a <<= 1
 
		b >>= 1
 
	return res
 

	
 

	
 
g = 3  # generator
 
E = [None]*256  # exponentials
 
L = [None]*256  # logarithms
 
acc = 1
 
for i in range(256):
 
	E[i] = acc
 
	L[acc] = i
 
	acc = _gfmul(acc, g)
 
L[1] = 0
 
INV = [E[255-L[i]] if i!=0 else None for i in range(256)]  # multiplicative inverse
 

	
 

	
 
def gfmul(a, b):
 
	"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
 
	assert 0<=a<=255, 0<=b<=255
 
	if a==0 or b==0: return 0
 
	t = L[a]+L[b]
 
	if t>255: t -= 255
 
	return E[t]
 

	
 

	
 
def evaluate(coefs, x):
 
	"""Evaluate polynomial's value at x.
 

	
 
	:param coefs: [a0, a1, ...]."""
 
	:param coefs: [an, ..., a1, a0]."""
 
	res = 0
 
	xk = 1
 
	for a in coefs:
 
		res ^= gfmul(a, xk)
 
		xk = gfmul(xk, x)
 

	
 
	for a in coefs:  # Horner's rule
 
		res = gfmul(res, x)
 
		res ^= a
 

	
 
	return res
 

	
 

	
 
def get_constant_coef(weights, y_coords):
 
	"""Compute constant polynomial coefficient given the points.
 

	
 
	See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
 
	return reduce(
 
		operator.xor,
 
		map(lambda ab: gfmul(*ab), zip(weights, y_coords))
 
	)
 

	
 

	
 
def compute_weights(x_coords):
 
	assert x_coords
 

	
 
	res = [
 
			reduce(
 
				gfmul,
 
				(gfmul(xj, INV[xj^xi]) for xj in x_coords if xi!=xj),
 
				1
 
			) for xi in x_coords
 
	]
 

	
 
	return res
src/shamira/tests/test_condensed.py
Show inline comments
 
@@ -7,82 +7,82 @@ from unittest import TestCase
 
from ..gf256 import _gfmul, evaluate
 
from .. import generate_raw, generate
 
from ..condensed import *
 

	
 

	
 
class TestCondensed(TestCase):
 
	_urandom = os.urandom
 

	
 
	@classmethod
 
	def setUpClass(cls):
 
		random.seed(17)
 
		os.urandom = lambda n: bytes(random.randint(0, 255) for i in range(n))
 

	
 
	@classmethod
 
	def tearDownClass(cls):
 
		os.urandom = cls._urandom
 

	
 
	def test_gfmul(self):
 
		for a in range(256):
 
			for b in range(256):
 
				self.assertEqual(_gfmul(a, b), gfmul(a, b))
 

	
 
	def test_get_constant_coef(self):
 
		self.assertEqual(get_constant_coef((1, 1), (2, 2), (3, 3)), 0)
 

	
 
		random.seed(17)
 
		random_matches = 0
 
		for i in range(10):
 
			k = random.randint(2, 255)
 

	
 
			# exact
 
			res = self.check_coefs_match(k, k)
 
			self.assertEqual(res[0], res[1])
 

	
 
			# overdetermined
 
			res = self.check_coefs_match(k, 256)
 
			self.assertEqual(res[0], res[1])
 

	
 
			# underdetermined => random
 
			res = self.check_coefs_match(k, k-1)
 
			if res[0]==res[1]:
 
				random_matches += 1
 
		self.assertLess(random_matches, 2)  # with a chance (255/256)**10=0.96 there should be no match
 

	
 
	def check_coefs_match(self, k, m):
 
		coefs = [random.randint(0, 255) for i in range(k)]
 
		points = [(j, evaluate(coefs, j)) for j in range(1, 256)]
 
		random.shuffle(points)
 
		return (get_constant_coef(*points[:m]), coefs[0])
 
		return (get_constant_coef(*points[:m]), coefs[-1])
 

	
 
	def test_generate_reconstruct_raw(self):
 
		for (k, n) in [(2, 3), (254, 254)]:
 
			shares = generate_raw(b"abcd", k, n)
 
			random.shuffle(shares)
 
			self.assertEqual(reconstruct_raw(*shares[:k]), b"abcd")
 
			self.assertNotEqual(reconstruct_raw(*shares[:k-1]), b"abcd")
 

	
 
	def test_generate_reconstruct(self):
 
		for secret in ["abcde", "ěščřžý"]:
 
			for (k, n) in [(2, 3), (254, 254)]:
 
				with self.subTest(sec=secret, k=k, n=n):
 
					shares = generate(secret, k, n)
 
					random.shuffle(shares)
 
					self.assertEqual(reconstruct(*shares[:k]), secret)
 
					try:
 
						self.assertNotEqual(reconstruct(*shares[:k-1]), secret)
 
					except SException:
 
						pass
 
		shares = generate(b"\xfeaa", 2, 3)
 
		with self.assertRaises(SException):
 
			reconstruct(*shares)
 

	
 
	def test_decode(self):
 
		with self.assertRaises(SException):
 
			decode("AAA")
 
			decode("1.")
 
			decode(".AAA")
 
			decode("1AAA")
 
			decode("1.AAAQEAY")
 
			decode("1.AAAQEAy=")
 
			decode("256.AAAQEAY=")
 
		self.assertEqual(decode("2.AAAQEAY="), (2, b"\x00\x01\x02\x03"))
src/shamira/tests/test_gf256.py
Show inline comments
 
# GNU GPLv3, see LICENSE
 

	
 
import random
 
import unittest
 
from unittest import TestCase
 

	
 
from ..gf256 import _gfmul
 
from ..gf256 import *
 

	
 

	
 
class TestGF256(TestCase):
 
	def test__gfmul(self):
 
		self.assertEqual(_gfmul(0, 0), 0)
 
		self.assertEqual(_gfmul(1, 1), 1)
 
		self.assertEqual(_gfmul(2, 2), 4)
 
		self.assertEqual(_gfmul(0, 21), 0)
 
		self.assertEqual(_gfmul(0x53, 0xca), 0x01)
 
		self.assertEqual(_gfmul(0xff, 0xff), 0x13)
 

	
 
	def test_gfmul(self):
 
		for a in range(256):
 
			for b in range(256):
 
				self.assertEqual(_gfmul(a, b), gfmul(a, b))
 

	
 
	def test_evaluate(self):
 
		for x in range(256):
 
			(a0, a1, a2, a3) = (x, x>>1, x>>2, x>>3)
 
			self.assertEqual(evaluate([17], x), 17)  # constant polynomial
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 0), x)  # any polynomial at 0
 
			self.assertEqual(evaluate([a0, a1, a2, a3], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
 
			self.assertEqual(evaluate([a3, a2, a1, a0], 0), x)  # any polynomial at 0
 
			self.assertEqual(evaluate([a3, a2, a1, a0], 1), a0^a1^a2^a3)  # polynomial at 1 == sum of coefficients
 

	
 
	def test_get_constant_coef(self):
 
		weights = compute_weights((1, 2, 3))
 
		ys = (1, 2, 3)
 
		self.assertEqual(get_constant_coef(weights, ys), 0)
 

	
 
		random.seed(17)
 
		random_matches = 0
 
		for i in range(10):
 
			k = random.randint(2, 255)
 

	
 
			# exact
 
			res = self.check_coefs_match(k, k)
 
			self.assertEqual(res[0], res[1])
 

	
 
			# overdetermined
 
			res = self.check_coefs_match(k, 256)
 
			self.assertEqual(res[0], res[1])
 

	
 
			# underdetermined => random
 
			res = self.check_coefs_match(k, k-1)
 
			if res[0]==res[1]:
 
				random_matches += 1
 
		self.assertLess(random_matches, 2)  # with a chance (255/256)**10=0.96 there should be no match
 

	
 
	def check_coefs_match(self, k, m):
 
		coefs = [random.randint(0, 255) for i in range(k)]
 
		points = [(j, evaluate(coefs, j)) for j in range(1, 256)]
 
		random.shuffle(points)
 

	
 
		(xs, ys) = zip(*points[:m])
 
		weights = compute_weights(xs)
 
		return (get_constant_coef(weights, ys), coefs[0])
 
		return (get_constant_coef(weights, ys), coefs[-1])
 

	
 

	
 
if __name__=='__main__':
 
	unittest.main()
0 comments (0 inline, 0 general)