Changeset - 3c3a529119dd
[Not reviewed]
default
0 2 0
Laman - 4 years ago 2020-12-18 12:30:43

updated performance.md
2 files changed with 28 insertions and 2 deletions:
0 comments (0 inline, 0 general)
performance.md
Show inline comments
 
# Performance comparison #
 
## The base case ##
 

	
 
Let's assume we have a secret of length _m_. The splitting takes _n_ evaluations of a polynomial of order _k_ (over Galois field 256) for each byte, leading to _O(n\*k\*m)_ finite field multiplications. Reconstruction of the constant parameters during joining first precomputes parts of the Lagrange polynomial and then reuses them for each byte, taking _O(k\*k + k\*m)_ multiplications.
 

	
 
Benchmark results. The times for split and join mean _seconds per byte_ of the secret length:
 
Benchmark results. Measured on a mid-end laptop made in 2020. The times for split and join mean _seconds per byte_ of the secret length:
 
<table>
 
    <tr>
 
        <th>Revision</th>
 
        <th>Features</th>
 
        <th>k / n parameters</th>
 
        <th>Split</th>
 
        <th>Join</th>
 
    </tr>
 
    <tr>
 
        <td rowspan="2">a47ae3e113cc</td>
 
        <td rowspan="2">-</td>
 
        <td>2 / 3</td>
 
        <td>5.02e-06</td>
 
        <td>4.12e-05</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254</td>
 
        <td>0.0125</td>
 
        <td>0.00175</td>
 
    </tr>
 
    <tr>
 
        <td rowspan="2">c6815615a077</td>
 
        <td rowspan="2">gfmul() caching</td>
 
        <td>2 / 3</td>
 
        <td>5.38e-06</td>
 
        <td>4.28e-05</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254</td>
 
        <td>0.00741</td>
 
        <td>0.00156</td>
 
    </tr>
 
</table>
 
\ No newline at end of file
 
    <tr>
 
        <td rowspan="2">0957647049ef</td>
 
        <td rowspan="2">splitting with FFT</td>
 
        <td>2 / 3</td>
 
        <td>1.26e-05</td>
 
        <td>-</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254</td>
 
        <td>0.00828</td>
 
        <td>-</td>
 
    </tr>
 
    <tr>
 
        <td rowspan="2">d5f60adc56c0</td>
 
        <td rowspan="2">splitting with FFT,<br> caching gfmul(), gfpow(), precompute_x()</td>
 
        <td>2 / 3</td>
 
        <td>7.88e-06</td>
 
        <td>-</td>
 
    </tr>
 
    <tr>
 
        <td>254 / 254</td>
 
        <td>0.00183</td>
 
        <td>-</td>
 
    </tr>
 
</table>
src/shamira/fft.py
Show inline comments
 
# GNU GPLv3, see LICENSE
 

	
 
import math
 
import cmath
 
import itertools
 
from functools import cache
 

	
 
from .gf256 import gfmul, gfpow
 

	
 
# divisors of 255 and their factors in natural numbers
 
DIVISORS = [3, 5, 15, 17, 51, 85, 255]
 
FACTORS = {3: [3], 5: [5], 15: [3, 5], 17: [17], 51: [3, 17], 85: [5, 17], 255: [3, 5, 17]}
 
# values of n-th square roots in GF256
 
SQUARE_ROOTS = {3: 189, 5: 12, 15: 225, 17: 53, 51: 51, 85: 15, 255: 3}
 

	
 

	
 
def ceil_size(n):
 
	assert n <= DIVISORS[-1]
 
	for (i, ni) in enumerate(DIVISORS):
 
		if ni >= n:
 
			break
 

	
 
	return ni
 

	
 

	
 
@cache
 
def precompute_x(n):
 
	"""Return a geometric sequence [1, w, w**2, ..., w**(n-1)], where w**n==1.
 
	This can be done only for certain values of n."""
 
	assert n in SQUARE_ROOTS, n
 
	w = SQUARE_ROOTS[n]  # primitive N-th square root of 1
 
	return list(itertools.accumulate([1]+[w]*(n-1), gfmul))
 

	
 

	
 
def complex_dft(p):
 
	"""Quadratic formula from the definition. The basic case in complex numbers."""
 
	N = len(p)
 
	w = cmath.exp(-2*math.pi*1j/N)  # primitive N-th square root of 1
 
	y = [0]*N
 
	for k in range(N):
 
		xk = w**k
 
		for n in range(N):
 
			y[k] += p[n] * xk**n
 
	return y
 

	
 

	
 
def dft(p):
 
	"""Quadratic formula from the definition. In GF256."""
 
	N = len(p)
 
	x = precompute_x(N)
 
	y = [0]*N
 
	for k in range(N):
 
		for n in range(N):
 
			y[k] ^= gfmul(p[n], gfpow(x[k], n))
 
	return y
 

	
 

	
 
def compute_inverse(N1, N2):
 
	for i in range(N2):
 
		if N1*i % N2 == 1:
 
			return i
 
	raise ValueError("Failed to find an inverse to {0} mod {1}.".format(N1, N2))
 

	
 

	
 
def prime_fft(p, divisors, basic_dft=dft):
 
	"""https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm"""
 
	if len(divisors) == 1:
 
		return basic_dft(p)
 
	N = len(p)
 
	N1 = divisors[0]
 
	N2 = N//N1
 
	N1_inv = compute_inverse(N1, N2)
 
	N2_inv = compute_inverse(N2, N1)
 

	
 
	ys = []
 
	for n1 in range(N1):  # compute rows
 
		p_ = [p[(n2*N1+n1*N2) % N] for n2 in range(N2)]
 
		ys.append(prime_fft(p_, divisors[1:], basic_dft))
 

	
 
	for k2 in range(N2):  # compute cols
 
		p_ = [row[k2] for row in ys]
 
		y_ = basic_dft(p_)
 
		for (yi, row) in zip(y_, ys):  # update col
 
			row[k2] = yi
 

	
 
	# remap and output
 
	res = [0]*N
 
	for k1 in range(N1):
 
		for k2 in range(N2):
 
			res[(k1*N2*N2_inv+k2*N1*N1_inv) % N] = ys[k1][k2]
 
	return res
 

	
 

	
 
def evaluate(coefs, n):
 
	ni = ceil_size(n)
 
	extended_coefs = coefs + [0]*(ni-len(coefs))
 
	ys = prime_fft(extended_coefs, FACTORS[ni])
 

	
0 comments (0 inline, 0 general)