Files
@ b9f1f39cd7af
Branch filter:
Location: Shamira/src/gf256.py - annotation
b9f1f39cd7af
1.4 KiB
text/x-python
check for non-unique shares on joining
8968eab714bc 8968eab714bc dae5ae50a2cf 9ccd379021d5 9ccd379021d5 cc4182acd584 dae5ae50a2cf cc4182acd584 dae5ae50a2cf cc4182acd584 cc4182acd584 cc4182acd584 cc4182acd584 dae5ae50a2cf 86a5417085ef 86a5417085ef cc4182acd584 cc4182acd584 cc4182acd584 cc4182acd584 86a5417085ef cc4182acd584 cc4182acd584 cc4182acd584 cc4182acd584 37a1df17b9a1 86a5417085ef 86a5417085ef dae5ae50a2cf 9ccd379021d5 90fb179128d4 86a5417085ef cc4182acd584 cc4182acd584 86a5417085ef 438dcebc9c63 438dcebc9c63 cc4182acd584 9ccd379021d5 9ccd379021d5 9ccd379021d5 cc4182acd584 37a1df17b9a1 438dcebc9c63 37a1df17b9a1 37a1df17b9a1 438dcebc9c63 db65075fe7e0 db65075fe7e0 37a1df17b9a1 dae5ae50a2cf dae5ae50a2cf dae5ae50a2cf cc4182acd584 cc4182acd584 db65075fe7e0 cc4182acd584 cc4182acd584 db65075fe7e0 db65075fe7e0 cc4182acd584 37a1df17b9a1 cc4182acd584 db65075fe7e0 | # GNU GPLv3, see LICENSE
"""Arithmetic operations on Galois Field 2**8. See https://en.wikipedia.org/wiki/Finite_field_arithmetic"""
def _gfmul(a, b):
"""Basic multiplication. Russian peasant algorithm."""
res = 0
while a and b:
if b&1: res ^= a
if a&0x80: a = 0xff&(a<<1)^0x1b
else: a <<= 1
b >>= 1
return res
g = 3 # generator
E = [None]*256 # exponentials
L = [None]*256 # logarithms
acc = 1
for i in range(256):
E[i] = acc
L[acc] = i
acc = _gfmul(acc, g)
L[1] = 0
INV = [E[255-L[i]] if i!=0 else None for i in range(256)] # multiplicative inverse
def gfmul(a, b):
"""Fast multiplication. Basic multiplication is expensive. a*b==g**(log(a)+log(b))"""
assert 0<=a<=255, 0<=b<=255
if a==0 or b==0: return 0
t = L[a]+L[b]
if t>255: t -= 255
return E[t]
def evaluate(coefs, x):
"""Evaluate polynomial's value at x.
:param coefs: [a0, a1, ...]."""
res = 0
xk = 1
for a in coefs:
res ^= gfmul(a, xk)
xk = gfmul(xk, x)
return res
def get_constant_coef(*points):
"""Compute constant polynomial coefficient given the points.
See https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing#Computationally_Efficient_Approach"""
k = len(points)
res = 0
for i in range(k):
(x, y) = points[i]
prod = 1
for j in range(k):
if i==j: continue
(xj, yj) = points[j]
prod = gfmul(prod, (gfmul(xj, INV[xj^x])))
res ^= gfmul(y, prod)
return res
|