use std::{collections::{HashMap, HashSet, VecDeque}, iter}; mod token; pub use token::ParsingError; use token::parse; const START_NFA: usize = usize::MAX; const START_DFA: usize = 0; fn encode_set(set: &HashSet) -> String { let mut v = Vec::from_iter(set.iter()); v.sort(); let res: Vec = v.into_iter().map(|x| x.to_string()).collect(); return res.join(","); } #[derive(Debug)] pub struct Regexp { rules: HashMap<(usize, char), HashSet>, end_states: HashSet, alphabet: Vec } impl Regexp { pub fn new(pattern: &String) -> Result { let r = parse(pattern, 0)?; let pattern_chars = Vec::from_iter(pattern.chars()); let mut rules: HashMap<(usize, char), HashSet> = HashMap::new(); let mut alphabet: HashSet = HashSet::new(); for i in r.list_first() { let c = pattern_chars[i]; alphabet.insert(c); let key = (START_NFA, c); match rules.get_mut(&key) { Some(set) => {set.insert(i);}, None => {rules.insert(key, HashSet::from([i]));} }; } for (i, j) in r.list_neighbours() { let c = pattern_chars[j]; alphabet.insert(c); let key = (i, c); match rules.get_mut(&key) { Some(set) => {set.insert(j);}, None => {rules.insert(key, HashSet::from([j]));} }; } let mut end_states = HashSet::from_iter(r.list_last().into_iter()); if r.is_skippable() { end_states.insert(START_NFA); } let mut alphabet_vec = Vec::from_iter(alphabet.into_iter()); alphabet_vec.sort(); return Ok(Regexp{rules, end_states, alphabet: alphabet_vec}); } pub fn eval(&self, s: String) -> bool { let mut multistate = HashSet::from([START_NFA]); for c in s.chars() { let mut new_multistate = HashSet::new(); for state in multistate { if let Some(x) = self.rules.get(&(state, c)) { new_multistate = new_multistate.union(&x).map(|&y| y).collect(); } else if let Some(x) = self.rules.get(&(state, '.')) { new_multistate = new_multistate.union(&x).map(|&y| y).collect(); } } multistate = new_multistate; } return multistate.iter().any(|x| self.end_states.contains(x)); } pub fn determinize(&self) -> RegexpDFA { const FAIL: usize = usize::MAX; let alphabet_index: HashMap = self.alphabet.iter().enumerate().map(|(i, c)| (*c, i)).collect(); let n = alphabet_index.len(); let mut compact_rules = vec![FAIL; n]; let mut end_states: HashSet = HashSet::new(); if self.end_states.contains(&START_NFA) {end_states.insert(START_DFA);} // string hash -> single int DFA state let mut index_new = HashMap::from([(START_NFA.to_string(), START_DFA)]); // string hash -> HashSet NFA multistate let mut index_multi = HashMap::from([(START_NFA.to_string(), HashSet::from([START_NFA]))]); let mut stack = Vec::from([START_NFA.to_string()]); while !stack.is_empty() { let state_hash = stack.pop().unwrap(); let multistate = &index_multi[&state_hash]; let mut new_rules: HashMap> = HashMap::new(); for key in self.rules.keys().filter(|(st, _c)| multistate.contains(st)) { let (_st, c) = key; if !new_rules.contains_key(c) { new_rules.insert(*c, HashSet::new()); } for target in &self.rules[key] { new_rules.get_mut(c).unwrap().insert(*target); } } for (c, target_set) in new_rules.into_iter() { let target_hash = encode_set(&target_set); let is_end = target_set.iter().any(|st| self.end_states.contains(st)); if !index_new.contains_key(&target_hash) { let target_new = index_new.len(); index_new.insert(target_hash.clone(), target_new); index_multi.insert(target_hash.clone(), target_set); compact_rules.extend(iter::repeat(FAIL).take(n)); stack.push(target_hash.clone()); } compact_rules[index_new[&state_hash]*n + alphabet_index[&c]] = index_new[&target_hash]; if is_end { end_states.insert(index_new[&target_hash]); } } } let fail = index_new.len(); compact_rules = compact_rules.into_iter().map(|st| if st != FAIL {st} else {fail}).collect(); compact_rules.extend(iter::repeat(fail).take(n)); return RegexpDFA::new(compact_rules, end_states, alphabet_index); } } #[derive(Clone)] pub struct RegexpDFA { rules: Vec, end_states: HashSet, alphabet_index: HashMap } impl RegexpDFA { pub fn new(rules: Vec, end_states: HashSet, alphabet_index: HashMap) -> RegexpDFA { if rules.len() > 0 { return RegexpDFA{rules, end_states, alphabet_index}; } else { return RegexpDFA{ rules: vec![1, 1], end_states, alphabet_index: HashMap::from([('\0', 0)]) }; } } pub fn eval(&self, s: String) -> bool { let n = self.alphabet_index.len(); let mut state = START_DFA; for c in s.chars() { if let Some(ci) = self.alphabet_index.get(&c) { state = self.rules[state*n + ci]; } else { return false; } } return self.end_states.contains(&state); } pub fn reduce(&self) -> RegexpDFA { let equivalents = self.find_equivalent_states(); return self.collapse_states(equivalents); } pub fn normalize(&self) -> RegexpDFA { let n = self.alphabet_index.len(); let m = self.rules.len()/n; let fail = m; let mut index: Vec = vec![fail;m]; index[0] = 0; let mut queue = VecDeque::from([START_DFA]); let mut rules = vec![]; let mut k = 1; while !queue.is_empty() { let si = queue.pop_front().unwrap(); let row = &self.rules[si*n..(si+1)*n]; for &sj in row { if sj != fail && index[sj] == fail { index[sj] = k; k += 1; queue.push_back(sj); } } rules.extend(row.iter().map(|&st| index[st])); } let end_states = self.end_states.iter().map(|st| index[*st]).collect(); return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}; } pub fn find_distinguishing_string(&self, other: &RegexpDFA) -> Option { if self.rules == other.rules && self.end_states == other.end_states { return None; } let r1 = self.expand_alphabet(&other.alphabet_index); let r2 = other.expand_alphabet(&self.alphabet_index); let product = r1.build_product_automaton(&r2); let n = product.alphabet_index.len(); let reverse_alphabet_index: HashMap = HashMap::from_iter(product.alphabet_index.iter().map(|(&k, &v)| (v, k))); let mut queue = VecDeque::from([(0, "".to_string())]); let mut visited = HashSet::new(); while !queue.is_empty() { let (state, acc) = queue.pop_front().unwrap(); if product.end_states.contains(&state) { return Some(acc); } for (i, target) in product.rules[state*n..(state+1)*n].iter().enumerate() { if !visited.contains(target) { queue.push_back((*target, acc.clone()+&String::from(reverse_alphabet_index[&i]))); visited.insert(target); } } } panic!(); } fn find_equivalent_states(&self) -> Vec<(usize, usize)> { let n = self.alphabet_index.len(); let state_vec: Vec = (0..self.rules.len()/n).collect(); let mut equivalents = HashSet::new(); state_vec.iter().enumerate().for_each(|(i, s1)| { equivalents.extend( state_vec[i+1..].iter() .filter(|s2| !(self.end_states.contains(s1)^self.end_states.contains(s2))) .map(|s2| (*s1, *s2)) ); }); let mut m = usize::MAX; while equivalents.len() < m { m = equivalents.len(); equivalents = equivalents.iter().filter(|(s1, s2)| { !(0..n).any(|ci| { let t1 = self.rules[s1*n + ci]; let t2 = self.rules[s2*n + ci]; let key = (t1.min(t2), t2.max(t1)); return t1 != t2 && !equivalents.contains(&key); }) }).copied().collect(); } return Vec::from_iter(equivalents.into_iter()); } fn collapse_states(&self, equivalents: Vec<(usize, usize)>) -> RegexpDFA { let n = self.alphabet_index.len(); let m = self.rules.len()/n; let mut rules = Vec::new(); let mut eq_mapping: Vec = ((0..m)).collect(); for (s1, s2) in equivalents.into_iter() { eq_mapping[s2] = eq_mapping[s2].min(s1); } let mut discard_mapping: Vec = ((0..m)).collect(); let mut discard_count = 0; for si in 0..m { if eq_mapping[si] != si { discard_count += 1; continue; } discard_mapping[si] = si-discard_count; rules.extend(self.rules[si*n..(si+1)*n].iter().map(|&st| eq_mapping[st])); } rules = rules.into_iter().map(|st| discard_mapping[st]).collect(); let end_states = self.end_states.iter().map(|st| discard_mapping[eq_mapping[*st]]).collect(); return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}; } fn expand_alphabet(&self, alphabet_index: &HashMap) -> RegexpDFA { if *alphabet_index == self.alphabet_index { return self.clone(); } let n1 = self.alphabet_index.len(); let m = self.rules.len() / n1; let combined_alphabet: HashSet = HashSet::from_iter(self.alphabet_index.keys().chain(alphabet_index.keys()).copied()); let mut combined_vec = Vec::from_iter(combined_alphabet.into_iter()); combined_vec.sort(); let combined_index = HashMap::from_iter(combined_vec.iter().enumerate().map(|(i, c)| (*c, i))); let conversion_index: HashMap = HashMap::from_iter(self.alphabet_index.iter().map(|(k, v)| (combined_index[k], *v))); let n2 = combined_vec.len(); let rules: Vec = (0..m*n2).map( |i| { let (j, k) = (i/n2, i%n2); return if conversion_index.contains_key(&k) { self.rules[j*n1 + conversion_index[&k]] } else {m}; } ).chain(std::iter::repeat(m).take(n2)).collect(); return RegexpDFA{rules, end_states: self.end_states.clone(), alphabet_index: combined_index}.reduce().normalize(); } fn build_product_automaton(&self, other: &RegexpDFA) -> RegexpDFA { let n = self.alphabet_index.len(); let m = other.rules.len() / n; let k = self.rules.len() / n; let mut rules = vec![]; let mut end_states = HashSet::new(); for s1 in 0..k { let row1 = &self.rules[s1*n..(s1+1)*n]; for s2 in 0..m { let row2 = &other.rules[s2*n..(s2+1)*n]; rules.extend(row1.iter().zip(row2.iter()).map(|(x, y)| x*m + y)); if (self.end_states.contains(&s1)) ^ (other.end_states.contains(&s2)) { end_states.insert(s1*m + s2); } } } return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}.reduce().normalize(); } }