diff --git a/src/regexp.rs b/src/regexp.rs --- a/src/regexp.rs +++ b/src/regexp.rs @@ -1,13 +1,14 @@ -use std::collections::{HashMap, HashSet, VecDeque}; +use std::{collections::{HashMap, HashSet, VecDeque}, iter}; mod token; pub use token::ParsingError; use token::parse; -const START: i32 = -1; -const FAIL: i32 = -2; +const START_NFA: usize = usize::MAX; +const START_DFA: usize = 0; +const FAIL: usize = usize::MAX>>1; -fn encode_set(set: &HashSet) -> String { +fn encode_set(set: &HashSet) -> String { let mut v = Vec::from_iter(set.iter()); v.sort(); let res: Vec = v.into_iter().map(|x| x.to_string()).collect(); @@ -16,44 +17,51 @@ fn encode_set(set: &HashSet) -> Str #[derive(Debug)] pub struct Regexp { - rules: HashMap<(i32, char), HashSet>, - end_states: HashSet + rules: HashMap<(usize, char), HashSet>, + end_states: HashSet, + alphabet: Vec } impl Regexp { pub fn new(pattern: &String) -> Result { let r = parse(pattern, 0)?; let pattern_chars = Vec::from_iter(pattern.chars()); - let mut rules: HashMap<(i32, char), HashSet> = HashMap::new(); + let mut rules: HashMap<(usize, char), HashSet> = HashMap::new(); + let mut alphabet: HashSet = HashSet::new(); for i in r.list_first() { let c = pattern_chars[i]; - let key = (START, c); + alphabet.insert(c); + let key = (START_NFA, c); match rules.get_mut(&key) { - Some(set) => {set.insert(i as i32);}, - None => {rules.insert(key, HashSet::from([i as i32]));} + Some(set) => {set.insert(i);}, + None => {rules.insert(key, HashSet::from([i]));} }; } for (i, j) in r.list_neighbours() { let c = pattern_chars[j]; - let key = (i as i32, c); + alphabet.insert(c); + let key = (i, c); match rules.get_mut(&key) { - Some(set) => {set.insert(j as i32);}, - None => {rules.insert(key, HashSet::from([j as i32]));} + Some(set) => {set.insert(j);}, + None => {rules.insert(key, HashSet::from([j]));} }; } - let mut end_states = HashSet::from_iter(r.list_last().into_iter().map(|i| i as i32)); + let mut end_states = HashSet::from_iter(r.list_last().into_iter()); if r.is_skippable() { - end_states.insert(START); + end_states.insert(START_NFA); } - return Ok(Regexp{rules, end_states}); + let mut alphabet_vec = Vec::from_iter(alphabet.into_iter()); + alphabet_vec.sort(); + + return Ok(Regexp{rules, end_states, alphabet: alphabet_vec}); } pub fn eval(&self, s: String) -> bool { - let mut multistate = HashSet::from([START]); + let mut multistate = HashSet::from([START_NFA]); for c in s.chars() { let mut new_multistate = HashSet::new(); @@ -72,18 +80,22 @@ impl Regexp { } pub fn determinize(&self) -> RegexpDFA { - let mut rules: HashMap<(i32, char), i32> = HashMap::new(); - let mut end_states: HashSet = HashSet::new(); - if self.end_states.contains(&START) {end_states.insert(START);} + let alphabet_index: HashMap = self.alphabet.iter().enumerate().map(|(i, c)| (*c, i)).collect(); + let n = alphabet_index.len(); + let mut compact_rules = vec![FAIL; n]; + let mut end_states: HashSet = HashSet::new(); + if self.end_states.contains(&START_NFA) {end_states.insert(START_DFA);} - let mut index_new = HashMap::from([(START.to_string(), START)]); - let mut index_multi = HashMap::from([(START.to_string(), HashSet::from([START]))]); - let mut stack = Vec::from([START.to_string()]); + // string hash -> single int DFA state + let mut index_new = HashMap::from([(START_NFA.to_string(), START_DFA)]); + // string hash -> HashSet NFA multistate + let mut index_multi = HashMap::from([(START_NFA.to_string(), HashSet::from([START_NFA]))]); + let mut stack = Vec::from([START_NFA.to_string()]); while !stack.is_empty() { let state_hash = stack.pop().unwrap(); let multistate = &index_multi[&state_hash]; - let mut new_rules: HashMap> = HashMap::new(); + let mut new_rules: HashMap> = HashMap::new(); for key in self.rules.keys().filter(|key| multistate.contains(&key.0)) { let (_st, c) = key; @@ -99,79 +111,90 @@ impl Regexp { let target_hash = encode_set(&target_set); let is_end = target_set.iter().any(|st| self.end_states.contains(st)); if !index_new.contains_key(&target_hash) { - let target_new = index_new.len() as i32; + let target_new = index_new.len(); index_new.insert(target_hash.clone(), target_new); index_multi.insert(target_hash.clone(), target_set); + compact_rules.extend(iter::repeat(FAIL).take(n)); stack.push(target_hash.clone()); } - rules.insert((index_new[&state_hash], c), index_new[&target_hash]); + compact_rules[index_new[&state_hash]*n + alphabet_index[&c]] = index_new[&target_hash]; if is_end { end_states.insert(index_new[&target_hash]); } } } - return RegexpDFA{rules, end_states}; + return RegexpDFA{rules: compact_rules, end_states, alphabet_index}; } } pub struct RegexpDFA { - rules: HashMap<(i32, char), i32>, - end_states: HashSet + rules: Vec, + end_states: HashSet, + alphabet_index: HashMap } impl RegexpDFA { pub fn eval(&self, s: String) -> bool { - let mut state = START; + let n = self.alphabet_index.len(); + let mut state = START_DFA; for c in s.chars() { - if let Some(x) = self.rules.get(&(state, c)) { - state = *x; + if let Some(ci) = self.alphabet_index.get(&c) { + state = self.rules[state*n + ci]; } else { return false; } + if state == FAIL { + return false; + } } return self.end_states.contains(&state); } pub fn reduce(&self) -> RegexpDFA { + if self.alphabet_index.len() == 0 { + return RegexpDFA{rules: self.rules.clone(), end_states: self.end_states.clone(), alphabet_index: self.alphabet_index.clone()}; + } let equivalents = self.find_equivalent_states(); return self.collapse_states(equivalents); } pub fn normalize(&self) -> RegexpDFA { - let mut index = HashMap::from([(START, START)]); - let mut queue = VecDeque::from([START]); + let n = self.alphabet_index.len(); + if n == 0 { + return RegexpDFA{rules: self.rules.clone(), end_states: self.end_states.clone(), alphabet_index: self.alphabet_index.clone()}; + } + let m = self.rules.len()/n; + let mut index: Vec = vec![FAIL;m]; + index[0] = 0; + let mut queue = VecDeque::from([START_DFA]); + + let mut rules = vec![]; + let mut k = 1; while !queue.is_empty() { - let state = queue.pop_front().unwrap(); - let mut edges: Vec<((i32, char), i32)> = self.rules.iter() - .filter(|((st, c), t)| *st == state) - .map(|((st, c), t)| ((*st, *c), *t)).collect(); - edges.sort(); - for ((_st, _c), t) in edges { - if !index.contains_key(&t) { - index.insert(t, index.len() as i32); - queue.push_back(t); + let si = queue.pop_front().unwrap(); + let row = &self.rules[si*n..(si+1)*n]; + for &sj in row { + if sj != FAIL && index[sj] == FAIL { + index[sj] = k; + k += 1; + queue.push_back(sj); } } + rules.extend(row.iter().map(|&st| if st != FAIL {index[st]} else {FAIL})); } - let rules = self.rules.iter().map(|((st, c), t)| ((index[st], *c), index[t])).collect(); - let end_states = self.end_states.iter().map(|st| index[st]).collect(); + let end_states = self.end_states.iter().map(|st| index[*st]).collect(); - return RegexpDFA{rules, end_states}; + return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}; } - fn find_equivalent_states(&self) -> Vec<(i32, i32)> { - let state_set: HashSet = HashSet::from_iter(self.rules.values().copied()); - let mut state_vec: Vec = Vec::from_iter(state_set.into_iter()); - state_vec.push(START); - state_vec.push(FAIL); - state_vec.sort(); - let alphabet: HashSet = self.rules.keys().map(|(_st, c)| c).copied().collect(); - + fn find_equivalent_states(&self) -> Vec<(usize, usize)> { + let n = self.alphabet_index.len(); + let state_vec: Vec = (0..self.rules.len()/n).collect(); let mut equivalents = HashSet::new(); state_vec.iter().enumerate().for_each(|(i, s1)| { equivalents.extend( @@ -181,14 +204,14 @@ impl RegexpDFA { ); }); - let mut n = usize::MAX; - while equivalents.len() < n { - n = equivalents.len(); + let mut m = usize::MAX; + while equivalents.len() < m { + m = equivalents.len(); equivalents = equivalents.iter().filter(|(s1, s2)| { - !alphabet.iter().any(|c| { - let t1 = self.rules.get(&(*s1, *c)).unwrap_or(&FAIL); - let t2 = self.rules.get(&(*s2, *c)).unwrap_or(&FAIL); - let key = (*t1.min(t2), *t1.max(t2)); + !(0..n).any(|ci| { + let t1 = self.rules[s1*n + ci]; + let t2 = self.rules[s2*n + ci]; + let key = (t1.min(t2), t2.max(t1)); return t1 != t2 && !equivalents.contains(&key); }) }).copied().collect(); @@ -197,18 +220,31 @@ impl RegexpDFA { return Vec::from_iter(equivalents.into_iter()); } - fn collapse_states(&self, mut equivalents: Vec<(i32, i32)>) -> RegexpDFA { - let mut rules = self.rules.clone(); - let mut end_states = self.end_states.clone(); - equivalents.sort(); + fn collapse_states(&self, equivalents: Vec<(usize, usize)>) -> RegexpDFA { + let n = self.alphabet_index.len(); + let m = self.rules.len()/n; + let mut rules = Vec::new(); + let mut eq_mapping: Vec = ((0..m)).collect(); for (s1, s2) in equivalents.into_iter() { - rules = rules.into_iter() - .filter(|((st, _c), _t)| *st != s2) - .map(|(key, t)| (key, if t==s2 {s1} else {t})).collect(); - end_states.remove(&s2); + eq_mapping[s2] = eq_mapping[s2].min(s1); } - return RegexpDFA{rules, end_states}; + let mut discard_mapping: Vec = ((0..m)).collect(); + let mut discard_count = 0; + + for si in 0..m { + if eq_mapping[si] != si { + discard_count += 1; + continue; + } + discard_mapping[si] = si-discard_count; + rules.extend(self.rules[si*n..(si+1)*n].iter().map(|&st| if st!=FAIL {eq_mapping[st]} else {FAIL})); + } + + rules = rules.into_iter().map(|st| if st!=FAIL {discard_mapping[st]} else {FAIL}).collect(); + let end_states = self.end_states.iter().map(|st| discard_mapping[eq_mapping[*st]]).collect(); + + return RegexpDFA{rules, end_states, alphabet_index: self.alphabet_index.clone()}; } }