Files @ 61a2b8f09823
Branch filter:

Location: Regular-Expresso/src/regexp.rs - annotation

61a2b8f09823 6.0 KiB application/rls-services+xml Show Source Show as Raw Download as Raw
Laman
refactoring: states represented by basic integers
4f7b6352013d
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
3cdbf505e6f8
e93b264ec5cc
95db38ce6846
95db38ce6846
e93b264ec5cc
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
e93b264ec5cc
95db38ce6846
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
7e640b0cffa7
e93b264ec5cc
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
95db38ce6846
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
95db38ce6846
e93b264ec5cc
95db38ce6846
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
95db38ce6846
95db38ce6846
95db38ce6846
e93b264ec5cc
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
e93b264ec5cc
61a2b8f09823
61a2b8f09823
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
61a2b8f09823
e93b264ec5cc
61a2b8f09823
61a2b8f09823
61a2b8f09823
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
95db38ce6846
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
95db38ce6846
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
4f7b6352013d
95db38ce6846
95db38ce6846
4f7b6352013d
4f7b6352013d
4f7b6352013d
95db38ce6846
95db38ce6846
95db38ce6846
4f7b6352013d
4f7b6352013d
4f7b6352013d
95db38ce6846
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
95db38ce6846
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
95db38ce6846
95db38ce6846
95db38ce6846
95db38ce6846
95db38ce6846
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
95db38ce6846
95db38ce6846
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
95db38ce6846
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
e93b264ec5cc
use std::collections::{HashMap, HashSet, VecDeque};

mod token;
pub use token::ParsingError;
use token::parse;

const START: i32 = -1;
const FAIL: i32 = -2;

fn encode_set(set: &HashSet<i32>) -> String {
	let mut v = Vec::from_iter(set.iter());
	v.sort();
	let res: Vec<String> = v.into_iter().map(|x| x.to_string()).collect();
	return res.join(",");
}

#[derive(Debug)]
pub struct Regexp {
	rules: HashMap<(i32, char), HashSet<i32>>,
	end_states: HashSet<i32>
}

impl Regexp {
	pub fn new(pattern: &String) -> Result<Regexp, ParsingError> {
		let r = parse(pattern, 0)?;
		let pattern_chars = Vec::from_iter(pattern.chars());
		let mut rules: HashMap<(i32, char), HashSet<i32>> = HashMap::new();
		
		for i in r.list_first() {
			let c = pattern_chars[i];
			let key = (START, c);
			match rules.get_mut(&key) {
				Some(set) => {set.insert(i as i32);},
				None => {rules.insert(key, HashSet::from([i as i32]));}
			};
		}

		for (i, j) in r.list_neighbours() {
			let c = pattern_chars[j];
			let key = (i as i32, c);
			match rules.get_mut(&key) {
				Some(set) => {set.insert(j as i32);},
				None => {rules.insert(key, HashSet::from([j as i32]));}
			};
		}

		let mut end_states = HashSet::from_iter(r.list_last().into_iter().map(|i| i as i32));
		if r.is_skippable() {
			end_states.insert(START);
		}

		return Ok(Regexp{rules, end_states});
	}

	pub fn eval(&self, s: String) -> bool {
		let mut multistate = HashSet::from([START]);

		for c in s.chars() {
			let mut new_multistate = HashSet::new();

			for state in multistate {
				if let Some(x) = self.rules.get(&(state, c)) {
					new_multistate = new_multistate.union(&x).map(|&y| y).collect();
				} else if let Some(x) = self.rules.get(&(state, '.')) {
					new_multistate = new_multistate.union(&x).map(|&y| y).collect();
				}
			}
			multistate = new_multistate;
		}

		return multistate.iter().any(|x| self.end_states.contains(x));
	}

	pub fn determinize(&self) -> RegexpDFA {
		let mut rules: HashMap<(i32, char), i32> = HashMap::new();
		let mut end_states: HashSet<i32> = HashSet::new();
		if self.end_states.contains(&START) {end_states.insert(START);}

		let mut index_new = HashMap::from([(START.to_string(), START)]);
		let mut index_multi = HashMap::from([(START.to_string(), HashSet::from([START]))]);
		let mut stack = Vec::from([START.to_string()]);

		while !stack.is_empty() {
			let state_hash = stack.pop().unwrap();
			let multistate = &index_multi[&state_hash];
			let mut new_rules: HashMap<char, HashSet<i32>> = HashMap::new();

			for key in self.rules.keys().filter(|key| multistate.contains(&key.0)) {
				let (_st, c) = key;
				if !new_rules.contains_key(c) {
					new_rules.insert(*c, HashSet::new());
				}
				for target in &self.rules[key] {
					new_rules.get_mut(c).unwrap().insert(*target);
				}
			}

			for (c, target_set) in new_rules.into_iter() {
				let target_hash = encode_set(&target_set);
				let is_end = target_set.iter().any(|st| self.end_states.contains(st));
				if !index_new.contains_key(&target_hash) {
					let target_new = index_new.len() as i32;
					index_new.insert(target_hash.clone(), target_new);
					index_multi.insert(target_hash.clone(), target_set);
					stack.push(target_hash.clone());
				}
				rules.insert((index_new[&state_hash], c), index_new[&target_hash]);
				if is_end {
					end_states.insert(index_new[&target_hash]);
				}
			}
		}

		return RegexpDFA{rules, end_states};
	}
}

pub struct RegexpDFA {
	rules: HashMap<(i32, char), i32>,
	end_states: HashSet<i32>
}

impl RegexpDFA {
	pub fn eval(&self, s: String) -> bool {
		let mut state = START;

		for c in s.chars() {
			if let Some(x) = self.rules.get(&(state, c)) {
				state = *x;
			} else {
				return false;
			}
		}

		return self.end_states.contains(&state);
	}

	pub fn reduce(&self) -> RegexpDFA {
		let equivalents = self.find_equivalent_states();
		return self.collapse_states(equivalents);
	}

	pub fn normalize(&self) -> RegexpDFA {
		let mut index = HashMap::from([(START, START)]);
		let mut queue = VecDeque::from([START]);

		while !queue.is_empty() {
			let state = queue.pop_front().unwrap();
			let mut edges: Vec<((i32, char), i32)> = self.rules.iter()
				.filter(|((st, c), t)| *st == state)
				.map(|((st, c), t)| ((*st, *c), *t)).collect();
			edges.sort();
			for ((_st, _c), t) in edges {
				if !index.contains_key(&t) {
					index.insert(t, index.len() as i32);
					queue.push_back(t);
				}
			}
		}

		let rules = self.rules.iter().map(|((st, c), t)| ((index[st], *c), index[t])).collect();
		let end_states = self.end_states.iter().map(|st| index[st]).collect();
		
		return RegexpDFA{rules, end_states};
	}

	fn find_equivalent_states(&self) -> Vec<(i32, i32)> {
		let state_set: HashSet<i32> = HashSet::from_iter(self.rules.values().copied());
		let mut state_vec: Vec<i32> = Vec::from_iter(state_set.into_iter());
		state_vec.push(START);
		state_vec.push(FAIL);
		state_vec.sort();
		let alphabet: HashSet<char> = self.rules.keys().map(|(_st, c)| c).copied().collect();

		let mut equivalents = HashSet::new();
		state_vec.iter().enumerate().for_each(|(i, s1)| {
			equivalents.extend(
				state_vec[i+1..].iter()
				.filter(|s2| !(self.end_states.contains(s1)^self.end_states.contains(s2)))
				.map(|s2| (*s1, *s2))
			);
		});

		let mut n = usize::MAX;
		while equivalents.len() < n {
			n = equivalents.len();
			equivalents = equivalents.iter().filter(|(s1, s2)| {
				!alphabet.iter().any(|c| {
					let t1 = self.rules.get(&(*s1, *c)).unwrap_or(&FAIL);
					let t2 = self.rules.get(&(*s2, *c)).unwrap_or(&FAIL);
					let key = (*t1.min(t2), *t1.max(t2));
					return t1 != t2 && !equivalents.contains(&key);
				})
			}).copied().collect();
		}

		return Vec::from_iter(equivalents.into_iter());
	}

	fn collapse_states(&self, mut equivalents: Vec<(i32, i32)>) -> RegexpDFA {
		let mut rules = self.rules.clone();
		let mut end_states = self.end_states.clone();
		equivalents.sort();

		for (s1, s2) in equivalents.into_iter() {
			rules = rules.into_iter()
				.filter(|((st, _c), _t)| *st != s2)
				.map(|(key, t)| (key, if t==s2 {s1} else {t})).collect();
			end_states.remove(&s2);
		}

		return RegexpDFA{rules, end_states};
	}
}