Files @ 4f7b6352013d
Branch filter:

Location: Regular-Expresso/src/regexp.rs - annotation

4f7b6352013d 6.0 KiB application/rls-services+xml Show Source Show as Raw Download as Raw
Laman
added the automaton normalization
4f7b6352013d
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
3cdbf505e6f8
e93b264ec5cc
e93b264ec5cc
0163ce5ddc96
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
7e640b0cffa7
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
7e640b0cffa7
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
e93b264ec5cc
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
4f7b6352013d
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
0163ce5ddc96
e93b264ec5cc
use std::collections::{HashMap, HashSet, VecDeque};

mod token;
pub use token::ParsingError;
use token::parse;

const START: usize = usize::MAX;
const FAIL: usize = START-1;

fn encode_set(set: &HashSet<usize>) -> u64 {
	let mut res = 0;
	for x in set.iter() {
		res ^= 1<<x;
	}
	return res;
}

fn decode_set(x: u64) ->HashSet<usize> {
	if x == START as u64 {return HashSet::from([START]);}

	let mut x = x;
	let mut res: HashSet<usize> = HashSet::new();
	
	while x > 0 {
		let y = x.trailing_zeros();
		res.insert(y as usize);
		x ^= 1 << y;
	}

	return res;
}

#[derive(Debug)]
pub struct Regexp {
	rules: HashMap<(usize, char), HashSet<usize>>,
	end_states: HashSet<usize>
}

impl Regexp {
	pub fn new(pattern: &String) -> Result<Regexp, ParsingError> {
		let r = parse(pattern, 0)?;
		let pattern_chars = Vec::from_iter(pattern.chars());
		let mut rules: HashMap<(usize, char), HashSet<usize>> = HashMap::new();
		
		for i in r.list_first() {
			let c = pattern_chars[i];
			let key = (START, c);
			match rules.get_mut(&key) {
				Some(set) => {set.insert(i);},
				None => {rules.insert(key, HashSet::from([i]));}
			};
		}

		for (i, j) in r.list_neighbours() {
			let c = pattern_chars[j];
			let key = (i, c);
			match rules.get_mut(&key) {
				Some(set) => {set.insert(j);},
				None => {rules.insert(key, HashSet::from([j]));}
			};
		}

		let mut end_states = HashSet::from_iter(r.list_last().into_iter());
		if r.is_skippable() {
			end_states.insert(START);
		}

		return Ok(Regexp{rules, end_states});
	}

	pub fn eval(&self, s: String) -> bool {
		let mut multistate = HashSet::from([START]);

		for c in s.chars() {
			let mut new_multistate = HashSet::new();

			for state in multistate {
				if let Some(x) = self.rules.get(&(state, c)) {
					new_multistate = new_multistate.union(&x).map(|&y| y).collect();
				} else if let Some(x) = self.rules.get(&(state, '.')) {
					new_multistate = new_multistate.union(&x).map(|&y| y).collect();
				}
			}
			multistate = new_multistate;
		}

		return multistate.iter().any(|x| self.end_states.contains(x));
	}

	pub fn determinize(&self) -> RegexpDFA {
		let mut rules: HashMap<(u64, char), u64> = HashMap::new();
		let mut end_states: HashSet<u64> = HashSet::new();
		if self.end_states.contains(&START) {end_states.insert(START as u64);}

		let mut stack = Vec::from([START as u64]);
		let mut processed_states = HashSet::new();
		while !stack.is_empty() {
			let state = stack.pop().unwrap();
			let multistate = decode_set(state);
			let mut new_rules: HashMap<char, HashSet<usize>> = HashMap::new();

			for key in self.rules.keys().filter(|key| multistate.contains(&key.0)) {
				let (_st, c) = key;
				if !new_rules.contains_key(c) {
					new_rules.insert(*c, HashSet::new());
				}
				for target in &self.rules[key] {
					new_rules.get_mut(c).unwrap().insert(*target);
				}
			}

			for (c, target_set) in new_rules.into_iter() {
				let encoded_target = encode_set(&target_set);
				rules.insert((state, c), encoded_target);
				if target_set.iter().any(|st| self.end_states.contains(st)) {
					end_states.insert(encoded_target);
				}
				if !processed_states.contains(&encoded_target) {
					stack.push(encoded_target);
					processed_states.insert(encoded_target);
				}
			}
		}

		return RegexpDFA{rules, end_states};
	}
}

pub struct RegexpDFA {
	rules: HashMap<(u64, char), u64>,
	end_states: HashSet<u64>
}

impl RegexpDFA {
	pub fn eval(&self, s: String) -> bool {
		let mut state = START as u64;

		for c in s.chars() {
			if let Some(x) = self.rules.get(&(state, c)) {
				state = *x;
			} else {
				return false;
			}
		}

		return self.end_states.contains(&state);
	}

	pub fn reduce(&self) -> RegexpDFA {
		let equivalents = self.find_equivalent_states();
		return self.collapse_states(equivalents);
	}

	pub fn normalize(&self) -> RegexpDFA {
		let mut index = HashMap::from([(START as u64, START as u64)]);
		let mut queue = VecDeque::from([START as u64]);

		while !queue.is_empty() {
			let state = queue.pop_front().unwrap();
			let mut edges: Vec<((u64, char), u64)> = self.rules.iter().filter(|((st, c), t)| *st == state).map(|((st, c), t)| ((*st, *c), *t)).collect();
			edges.sort();
			for ((_st, _c), t) in edges {
				if !index.contains_key(&t) {
					index.insert(t, index.len() as u64);
					queue.push_back(t);
				}
			}
		}

		let rules = self.rules.iter().map(|((st, c), t)| ((index[st as &u64], *c), index[t as &u64])).collect();
		let end_states = self.end_states.iter().map(|st| index[st]).collect();
		
		return RegexpDFA{rules, end_states};
	}

	fn find_equivalent_states(&self) -> Vec<(u64, u64)> {
		let state_set: HashSet<u64> = HashSet::from_iter(self.rules.values().copied());
		let mut state_vec: Vec<u64> = Vec::from_iter(state_set.into_iter());
		state_vec.push(START as u64);
		state_vec.push(FAIL as u64);
		state_vec.sort();
		state_vec.reverse();
		let alphabet: HashSet<char> = self.rules.keys().map(|(_st, c)| c).copied().collect();

		let mut equivalents = HashSet::new();
		state_vec.iter().enumerate().for_each(|(i, s1)| {
			equivalents.extend(
				state_vec[i+1..].iter()
				.filter(|s2| !(self.end_states.contains(s1)^self.end_states.contains(s2)))
				.map(|s2| (*s1, *s2))
			);
		});

		let mut n = usize::MAX;
		while equivalents.len() < n {
			n = equivalents.len();
			equivalents = equivalents.iter().filter(|(s1, s2)| {
				!alphabet.iter().any(|c| {
					let t1 = self.rules.get(&(*s1, *c)).unwrap_or(&(FAIL as u64));
					let t2 = self.rules.get(&(*s2, *c)).unwrap_or(&(FAIL as u64));
					let key = (*t1.min(t2), *t1.max(t2));
					return t1 != t2 && !equivalents.contains(&key);
				})
			}).copied().collect();
		}

		return Vec::from_iter(equivalents.into_iter());
	}

	fn collapse_states(&self, mut equivalents: Vec<(u64, u64)>) -> RegexpDFA {
		let mut rules = self.rules.clone();
		let mut end_states = self.end_states.clone();
		equivalents.sort();

		for (s1, s2) in equivalents.into_iter() {
			rules = rules.into_iter()
				.filter(|((st, _c), _t)| *st != s2)
				.map(|(key, t)| (key, if t==s2 {s1} else {t})).collect();
			end_states.remove(&s2);
		}

		return RegexpDFA{rules, end_states};
	}
}