import argparse import logging as log import numpy as np from keras.models import load_model import keras.metrics from prepare_data import loadDataset,Sample from analyzer.epoint import EPoint from analyzer.corners import Corners from k_util import averageDistance,generateData import config as cfg keras.losses.averageDistance=averageDistance keras.metrics.averageDistance=averageDistance parser=argparse.ArgumentParser() parser.add_argument("model") parser.add_argument("data") args=parser.parse_args() model=load_model(args.model) model.summary() log.info("loading data...") with np.load(args.data) as data: testImages=(np.float32(data["testImages"])/128-1).reshape((-1,224,224,1)) testLabels=data["testLabels"].reshape((-1,4,2)) log.info("done") log.info(model.evaluate(testImages,testLabels)) for img in testImages: label=model.predict(np.reshape(img,(1,224,224,1))) print(label) points=[] for i in range(4): points.append(EPoint((label[0][i][0]+1)*112,(label[0][i][1]+1)*112)) corners=Corners(points) sample=Sample(np.uint8((img+1)*128),corners) sample.show()