import os from time import time import argparse import logging as log import numpy as np from keras.layers import Conv2D,Dropout,Dense,Flatten,MaxPooling2D,GlobalAveragePooling2D,BatchNormalization from keras.models import Sequential,load_model,Model from keras.optimizers import SGD from keras.callbacks import TensorBoard from keras.applications.inception_v3 import InceptionV3,preprocess_input import config as cfg import ftp parser=argparse.ArgumentParser() parser.add_argument("data") parser.add_argument("--load_model") parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5") parser.add_argument("--epochs",type=int,default=100) parser.add_argument("--initial_epoch",type=int,default=0) parser.add_argument("--log_dir",default="/tmp/tflogs") args=parser.parse_args() def createFullyConnected(): model=Sequential([ Flatten(input_shape=(224,224)), Dense(128, activation="relu"), Dropout(0.1), Dense(64, activation="relu"), Dense(8) ]) model.compile( optimizer='adam', loss='mse', metrics=['mae','accuracy'] ) return model def createCNN(): model=Sequential() model.add(Conv2D(filters=16,kernel_size=2,padding="same",activation="relu",input_shape=(224,224,1))) model.add(Dropout(0.1)) model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")) model.add(BatchNormalization()) model.add(Conv2D(32,(5,5),activation="relu")) model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")) model.add(Dropout(0.2)) model.add(BatchNormalization()) model.add(Conv2D(64,(5,5),activation="relu")) model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")) model.add(BatchNormalization()) model.add(Conv2D(128,(3,3),activation="relu")) model.add(MaxPooling2D(pool_size=(2,2),strides=(2,2),padding="valid")) model.add(Dropout(0.4)) model.add(BatchNormalization()) model.add(Flatten()) model.add(Dense(500,activation="relu")) model.add(Dropout(0.1)) model.add(Dense(128,activation="relu")) model.add(Dropout(0.1)) model.add(Dense(8)) model.compile(optimizer='adam',loss='mse',metrics=['mae','accuracy']) return model def createPretrained(): base=InceptionV3(weights="imagenet",include_top=False,input_shape=(224,224,3)) x=base.output x=GlobalAveragePooling2D()(x) x=Dense(1024,activation="relu")(x) predictions=Dense(8)(x) model=Model(inputs=base.input,outputs=predictions) for layer in base.layers: layer.trainable=False model.compile(optimizer='adam',loss='mse',metrics=['mae','accuracy']) return model if args.load_model: model=load_model(args.load_model) else: model=createPretrained() log.info("loading data...") with np.load(args.data) as data: trainImages=preprocess_input(data["trainImages"]) trainLabels=data["trainLabels"] testImages=preprocess_input(data["testImages"]) testLabels=data["testLabels"] log.info("done") tensorboard = TensorBoard(log_dir=os.path.join(args.log_dir,"{}".format(time()))) if not args.load_model: model.fit(trainImages.reshape((-1,224,224,3)),trainLabels,epochs=10,batch_size=128,validation_split=0.2,callbacks=[tensorboard]) for layer in model.layers[:249]: layer.trainable = False for layer in model.layers[249:]: layer.trainable = True model.compile(optimizer=SGD(lr=0.0001,momentum=0.9),loss='mse') BIG_STEP=20 for i in range(args.initial_epoch//BIG_STEP,args.epochs//BIG_STEP): model.fit(trainImages.reshape((-1,224,224,3)),trainLabels,epochs=(i+1)*BIG_STEP,initial_epoch=i*BIG_STEP,batch_size=128,validation_split=0.2,callbacks=[tensorboard]) path=args.save_model.format((i+1)*BIG_STEP) log.info("saving model...") model.save(path) # ftp.push(path) log.info(model.evaluate(testImages.reshape((-1,224,224,3)),testLabels))