from keras.layers import Conv2D,Dropout,Dense,Flatten from keras.models import Sequential model = Sequential([ Flatten(input_shape=(96,96)), Dense(128, activation="relu"), Dropout(0.1), Dense(64, activation="relu"), Dense(30) ]) model.compile( optimizer='adam', loss='mse', metrics=['mae','accuracy'] ) model.fit(X_train,y_train,epochs = 500,batch_size = 128,validation_split = 0.2)