import sys sys.path.append("../src") import math from datetime import datetime import logging as log import numpy as np import scipy.optimize import scipy.signal import cv2 as cv from geometry import EPoint,Line DEBUG=True class LineBag: def __init__(self): self._lines=[] def put(self,score,alpha,beta,peaks): self._lines.append((score,alpha,beta,peaks)) def pull(self,count): self._lines.sort(reverse=True) res=[] for (score,alpha,beta,peaks) in self._lines: if any(abs(alpha-gamma)<10 and abs(beta-delta)<10 for (_,gamma,delta,_) in res): continue if any((beta-delta)!=0 and (alpha-gamma)/(beta-delta)<0 for (_,gamma,delta,_) in res): continue res.append((score,alpha,beta,peaks)) if len(res)>=count: break return res class HoughTransform: """Find line sequences with Hough transform. Uses usual image coordinates on input and output, with [0,0] in the upper left corner and [height-1,width-1] in the lower right. However, internally it uses the usual cartesian coordinates, centered at the image center. [-w/2,-h/2] in the upper left and [w/2,h/2] in the lower right.""" def __init__(self,img): self._angleBandwidth=30 # degrees (h,w)=img.shape[:2] self._diagLen=int(np.sqrt(h**2+w**2))+1 self._center=(w//2,h//2) self._acc=np.zeros((180,self._diagLen),dtype=np.int32) self.update(img) def extract(self): img=self._createImg() self.show(img) lines=self._detectLines() res=[] i=0 for (score,alpha,beta,peaks) in lines: log.debug("score: %s",score) log.debug("alpha, beta: %s, %s",alpha,beta) self._drawLine(img,alpha,beta,peaks,i) keys=self._readLineKeys(alpha,beta) for k in peaks: (alphaDeg,d)=keys[k] line=Line(alphaDeg*math.pi/180,d-self._diagLen//2) res.append(self._transformOutput(line)) i+=1 self.show(img) return res def update(self,img,weight=1): start=datetime.now().timestamp() for (r,row) in enumerate(img): for (c,pix) in enumerate(row): if pix==0: continue for alphaDeg in range(0,180): d=self._computeDist(c,r,alphaDeg)+self._diagLen//2 self._acc[(alphaDeg,d)]+=weight log.debug("Hough updated in %s s",round(datetime.now().timestamp()-start,3)) def show(self,img=None): if img is None: img=self._createImg() show(img,"Hough transform accumulator") def _computeDist(self,x,y,alphaDeg): alphaRad=alphaDeg*math.pi/180 (x0,y0)=self._center (dx,dy)=(x-x0,y0-y) d=dx*math.cos(alphaRad)+dy*math.sin(alphaRad) return round(d) def _detectLines(self): bag=LineBag() for alpha in range(0,180+60,2): for beta in range(max(alpha-60,0),min(alpha+60,180+60),2): accLine=[self._acc[key] for key in self._readLineKeys(alpha,beta)] (peaks,props)=scipy.signal.find_peaks(accLine,prominence=0) (prominences,peaks)=zip(*sorted(zip(props["prominences"],peaks),reverse=True)[:19]) bag.put(sum(prominences),alpha,beta,peaks) return bag.pull(2) def _readLineKeys(self,alpha,beta): n=self._diagLen-1 res=[] for i in range(n+1): k=round((alpha*(n-i)+beta*i)/n) if k>=180: k=k%180 i=n-i res.append((k,i)) return res def _transformOutput(self,line): (x,y)=self._center basis=EPoint(-x,y) shiftedLine=line.shiftBasis(basis) reflectedLine=Line(math.pi*2-shiftedLine.alpha,shiftedLine.d) log.debug("%s -> %s",line,reflectedLine) return reflectedLine def _createImg(self): maxVal=self._acc.max() arr=np.expand_dims(np.uint8(255*self._acc//maxVal),axis=2) img=np.concatenate((arr,arr,arr),axis=2) (h,w)=img.shape[:2] for x in range(0,w,4): # y axis img[h//2,x]=[255,255,255] for y in range(0,h,4): img[y,w//2]=[255,255,255] return img def _drawLine(self,img,alpha,beta,peaks,colorKey): colors=[[0,255,255],[255,0,255],[255,255,0]] color=colors[colorKey] (h,w)=img.shape[:2] keys=self._readLineKeys(alpha,beta) for (y,x) in keys: if x%3!=0: continue if y<0 or y>=h: continue img[y,x]=color for k in peaks: (y,x)=keys[k] cv.drawMarker(img,(x,y),color,cv.MARKER_TILTED_CROSS,8) def show(img,filename="x"): cv.imshow(filename,img) cv.waitKey(0) cv.destroyAllWindows() def filterVert(edges): kernel = np.array([[1,0,1],[1,0,1],[1,0,1]],np.uint8) edges = cv.erode(edges,kernel) kernel=np.array([[0,1,0],[0,1,0],[0,1,0]],np.uint8) edges=cv.dilate(edges,kernel) return edges def filterHor(edges): kernel = np.array([[1,1,1],[0,0,0],[1,1,1]],np.uint8) edges = cv.erode(edges,kernel) kernel=np.array([[0,0,0],[1,1,1],[0,0,0]],np.uint8) edges=cv.dilate(edges,kernel) return edges def filterDiag(edges): kernel = np.array([[0,0,1],[1,0,0],[0,1,0]],np.uint8) edges1 = cv.erode(edges,kernel) kernel=np.array([[1,0,0],[0,1,0],[0,0,1]],np.uint8) edges1=cv.dilate(edges1,kernel) kernel = np.array([[0,1,0],[1,0,0],[0,0,1]],np.uint8) edges2 = cv.erode(edges,kernel) kernel=np.array([[0,0,1],[0,1,0],[1,0,0]],np.uint8) edges2=cv.dilate(edges2,kernel) return edges1+edges2 def prepareEdgeImg(img): gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY) show(gray,"greyscale image") edges=cv.Canny(gray,70,130) show(edges,"Canny edge detector") edges=filterHor(edges)+filterVert(edges)+filterDiag(edges) show(edges,"kernel filtered edges") return edges