import argparse import numpy as np from keras.models import load_model from prepare_data import loadDataset,Sample from analyzer.epoint import EPoint from analyzer.corners import Corners parser=argparse.ArgumentParser() parser.add_argument("model") parser.add_argument("data_dir") args=parser.parse_args() model=load_model(args.model) print("loading data...") ((trainImages,trainLabels),(testImages,testLabels))=loadDataset(args.data_dir) print("done") for img in testImages: label=model.predict(np.reshape(img,(1,224,224,1))) print(label) points=[] for i in range(4): points.append(EPoint(label[0][i*2],label[0][i*2+1])) corners=Corners(points) sample=Sample(np.uint8(img),corners) sample.show()