import argparse from keras.layers import Conv2D,Dropout,Dense,Flatten from keras.models import Sequential,load_model from prepare_data import loadDataset parser=argparse.ArgumentParser() parser.add_argument("data_dir") parser.add_argument("--load_model") parser.add_argument("--save_model",default="/tmp/gogo-{0:03}.h5") parser.add_argument("--epochs",type=int,default=100) parser.add_argument("--initial_epoch",type=int,default=0) args=parser.parse_args() model=Sequential([ Flatten(input_shape=(224,224)), Dense(128, activation="relu"), Dropout(0.1), Dense(64, activation="relu"), Dense(8) ]) model.compile( optimizer='adam', loss='mse', metrics=['mae','accuracy'] ) if args.load_model: model=load_model(args.load_model) print("loading data...") ((trainImages,trainLabels),(testImages,testLabels))=loadDataset(args.data_dir) print("done") for i in range(args.initial_epoch,args.epochs//10): model.fit(trainImages,trainLabels,epochs=(i+1)*10,initial_epoch=i*10,batch_size=128,validation_split=1/9) model.save(args.save_model.format(i+1)) print(model.evaluate(testImages,testLabels))