import os import sys import re import random import numpy as np import cv2 as cv sys.path.append("..") sys.path.append("../../src") from annotations import DataFile,computeBoundingBox,Corners,EPoint from geometry import Line from kerokero.transformation_matrices import getIdentity,getRotation,getTranslation,getScale,getMirroring,getProjection random.seed(361) class Sample: SIDE=224 def __init__(self,img,grid): """:param img: a greyscale image as a 2D np.uint8 :param grid: iterable of 4 EPoints, ie. Corners""" self.img=img self.grid=grid def transform(self): """:return: (img, grid), where img is a 2D np.float32 with values in (0,1), grid [(float) x, (float) y, ...], with x, y in (-1,1)""" center=self._getCenter() m=getIdentity() t1=getTranslation(-center.x,-center.y) proj=getProjection() rot=getRotation() mir=getMirroring() for mi in [t1,mir,proj,rot]: m=np.matmul(mi,m) m=np.matmul(self._computeCrop(m),m) img=cv.warpPerspective(self.img,m,(self.SIDE,self.SIDE)) img=np.float32(img)/128-1 grid=Corners(c.transform(m) for c in self.grid) grid=list(map(lambda p: list(2*p/self.SIDE-EPoint(1,1)), grid)) return (img,grid) def _getCenter(self): (a,b,c,d)=self.grid p=Line.fromPoints(a,c) q=Line.fromPoints(b,d) return p.intersect(q) def _computeCrop(self,m): grid=Corners(c.transform(m) for c in self.grid) (x1,y1,x2,y2)=computeBoundingBox(grid) (wg,hg)=(x2-x1,y2-y1) (left,top,right,bottom)=[random.uniform(0.05,0.2) for i in range(4)] t2=getTranslation(left*wg-x1, top*hg-y1) scale=getScale(self.SIDE/(wg*(1+left+right)), self.SIDE/(hg*(1+top+bottom))) return np.matmul(scale,t2) def show(self): img=cv.cvtColor(self.img,cv.COLOR_GRAY2BGR) for c in self.grid: cv.circle(img,(int(c.x),int(c.y)),3,[0,255,0],-1) show(img) def traverseDirs(root): stack=[root] while len(stack)>0: d=stack.pop() contents=sorted(os.scandir(d),key=lambda f: f.name,reverse=True) if any(f.name=="annotations.json.gz" for f in contents): print(d) yield d for f in contents: if f.is_dir(): stack.append(f.path) def harvestDir(path): annotations=DataFile(os.path.join(path,"annotations.json.gz")) imgFilter=lambda f: f.is_file() and re.match(r".*\.(jpg|jpeg|png|gif)$", f.name.lower()) files=sorted(filter(imgFilter,os.scandir(path)),key=lambda f: f.name) boards=annotations["."] for f in files: img=cv.imread(f.path) img=cv.cvtColor(img,cv.COLOR_BGR2GRAY) for b in boards: sample=Sample(img,b.grid) # sample.show() (transformedImg,label)=sample.transform() # Sample(np.uint8((transformedImg+1)*128),map(lambda c: (c+EPoint(1,1))*Sample.SIDE/2,transformedGrid)).show() yield (transformedImg,label) def loadDataset(root): testRatio=0.1 trainRatio=1-testRatio images=[] labels=[] for d in traverseDirs(root): for (img,label) in harvestDir(d): images.append(img) labels.append(label) n=len(images) keys=list(range(n)) random.shuffle(keys) images=[images[k] for k in keys] labels=[labels[k] for k in keys] m=int(n*trainRatio) return ( (np.float32(images[:m]),np.float32(labels[:m])), (np.float32(images[m:]),np.float32(labels[m:])) ) def show(img,filename="x"): cv.imshow(filename,img) cv.waitKey(0) cv.destroyAllWindows() if __name__=="__main__": ((trainImages,trainLabels),(testImages,testLabels))=loadDataset(sys.argv[1]) np.savez_compressed( sys.argv[2], trainImages=trainImages, trainLabels=trainLabels, testImages=testImages, testLabels=testLabels )